

நில/பரெனி திரட்டையை - புதிய/பழைய பாடத்திட்டம் - New/Old Syllabus

අධ්‍යාපන පොදු සහතික පත්‍ර (උසස් පෙළ) විභාගය, 2020
කළුවිප පොතුතු තුරාතුරුප පත්තිර (ඉයුර තරු)ප පරිශ්‍යී, 2020
General Certificate of Education (Adv. Level) Examination, 2020

உயர் கணிதம்

Higher Mathematics

11 E I

ପ୍ରେ କୁଳାଳ
ମୁଣ୍ଡୁ ମଣିତତ୍ତ୍ଵିଯାଲମ୍
Three hours

அமுலர் தியலீல் காலை	- தீவித்து 10 கி
மேலதிக வாசிப்பு நேரம்	- 10 நிமிடங்கள்
Additional Reading Time	10 minutes

Use additional reading time to go through the question paper, select the questions you will answer and decide which of them you will prioritise.

Instructions:

Index Number

- * *This question paper consists of two parts; Part A (Questions 1 - 10) and Part B (Questions 11 - 17).*
- * **Part A:**
Answer all questions. Write your answers to each question in the space provided. You may use additional sheets if more space is needed.
- * **Part B:**
Answer five questions only. Write your answers on the sheets provided.
- * *At the end of the time allotted, tie the answer scripts of the two parts together so that Part A is on top of Part B and hand them over to the supervisor.*
- * *You are permitted to remove only Part B of the question paper from the Examination Hall.*

For Examiners' Use only

(11) Higher Mathematics I		
Part	Question No.	Marks
A	1	
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	
	10	
B	11	
	12	
	13	
	14	
	15	
	16	
	17	
	Total	

Total	
In Numbers	
In Words	

Code Numbers	
Marking Examiner	
Checked by:	1
	2
Supervised by:	

Part A

1. Factorize: $(a+b-c)(b+c-a)(c+a-b) - 8abc$.

2. Let a relation R be defined on the set of all integers \mathbb{Z} by aRb if $a + 3b$ is divisible by 4. Show that R is an equivalence relation on \mathbb{Z} and write down the equivalence class of 0.

3. Let $f(x) = \frac{x-1}{2x+1}$ for $x \neq -\frac{1}{2}$.
 Find $f^{-1}(x)$. Also, find $f(3f^{-1}(0))$.

More Past Papers at
tamilguru.lk

4. Find the values of the constant α such that

$$\begin{vmatrix} a+p\alpha & b+q\alpha & c+r\alpha \\ a\alpha+p & b\alpha+q & c\alpha+r \\ x & y & z \end{vmatrix} + 3 \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix} = 0.$$

5. Two variable points $P \equiv (ap^2, 2ap)$ and $Q \equiv (aq^2, 2aq)$ lie on the parabola $y^2 = 4ax$ such that PQ subtends a right angle at the origin O .
 Show that $pq = -4$ and that the mid-point of PQ lies on the parabola $y^2 = 2a(x - 4a)$.

Show that $pq = -4$ and that the mid-point of PQ lies on the parabola $y^2 = 2a(x - 4a)$.

6. Let $a, b \in \mathbb{R}$ and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} \frac{a \sin 2x}{x} & \text{if } x < 0, \\ (b-1)x + a & \text{if } 0 \leq x \leq 1, \\ b \frac{(x-1)}{|x-1|} & \text{if } 1 < x. \end{cases}$$

If f is continuous, find the values of a and b .

$$7. \text{ Let } f(x) = \begin{cases} x^2 + 1, & \text{if } x \leq 0, \\ -x^2 + 1, & \text{if } 0 < x < 1, \\ x - 1, & \text{if } 1 \leq x. \end{cases}$$

Show that $f(x)$ is differentiable at $x = 0$ and non-differentiable at $x = 1$.

Write down $f'(x)$ for $x \neq 1$.

Solve the differential equation $\frac{dy}{dx} + 2y = x$, subject to the condition $y = 1$ when $x = 0$.

9. Let f be a real-valued function on $[0, 1]$ such that f' is continuous on $[0, 1]$.

Also, let $g(x) = 3x^2 f(x^3) + xf'(x)$ for $x \in [0, 1]$. Show that $\int_0^1 g(x) dx = f(1)$.

10. Sketch the curves whose polar equations are given by $r = \sqrt{3} \cos \theta$ and $r = 2 \sin \theta - \sqrt{3} \cos \theta$ in the same diagram, and find the polar coordinates of their points of intersection.

நல/பயிற்சி திரட்டீகை - புதிய/பழைய பாடத்திட்டம் - New/Old Syllabus

NEW/OLD

தெலுாற்று முறை மூலம் பாடத்திட்டம் - Department of Examinations, Sri Lanka

நல/பயிற்சி திரட்டீகை - புதிய/பழைய பாடத்திட்டம் - New/Old Syllabus

உதவை மூலம் பாடத்திட்டம் - நல/பயிற்சி திரட்டீகை - புதிய/பழைய பாடத்திட்டம் - New/Old Syllabus

11 E I

* Answer **five** questions only.

Part B

11.(a) Let A , B and C be subsets of a universal set S . Stating clearly the Laws of Algebra of sets that you use, show that

- $A' \cup ((A \cup B) - B) = (A \cap B)'$,
- $(A \cup B \cup C) - ((A - C) - B) = B \cup C$,

where $A - B$ is defined by $A \cap B'$.

(b) In a music class of 100 students, 85 students like to play violin, 20 like to play piano and 45 like to play guitar. Also, 10 like to play violin and piano, 15 like to play piano and guitar, and 30 like to play guitar and violin. Find the number of students who like to play

- all three instruments,
- violin and guitar, but not piano,
- violin or guitar,

assuming that every student like to play at least one of the three instruments.

12.(a) Let $a, b, c > 0$.

(i) Show that $\frac{a+b}{2} \geq \sqrt{ab}$ and deduce that $(a+b)(b+c)(c+a) \geq 8abc$.

(ii) Using $\frac{a+b+c}{3} \geq \sqrt[3]{abc}$, show that if $a+b+c=2$, then $(1-a)(1-b)(1-c) \leq \frac{1}{27}$.

(b) The transformation $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ maps points in the xy -plane to the points in the $x'y'$ -plane. Find the equations of the two straight lines in the xy -plane through the point $(0, 1)$ which are mapped onto themselves.

Let $A \equiv (1, 1)$ and $B \equiv (1, 0)$ be two points in the xy -plane. Show that their images lie on the line $2x' - 3y' - 5 = 0$ in the $x'y'$ -plane.

More Past Papers at
tamilguru.lk

13. State and prove **De Moivre's Theorem** for a positive integral index.

Using **De Moivre's Theorem**, show that

$$\frac{\cos 5\theta}{\cos \theta} = 16 \cos^4 \theta - 20 \cos^2 \theta + 5 \text{ for } \cos \theta \neq 0.$$

Using this result,

(i) evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos 5\theta \tan \theta d\theta$,

(ii) show that the roots of the quadratic equation $16x^2 - 20x + 5 = 0$ are $\cos^2 \frac{\pi}{10}$ and $\cos^2 \frac{3\pi}{4}$.

Deduce that $\sec^2 \frac{\pi}{10} + \sec^2 \frac{3\pi}{4} = \frac{1}{4}$.

14.(a) Let C_1 be the ellipse $x^2 + 6y^2 = 25$ and C_2 be the parabola $y^2 = 4x$. Sketch the graphs of C_1 and C_2 in the same diagram indicating the coordinates of their points of intersection.

Find the area of the region R in the **first quadrant** bounded by the curves C_1 and C_2 .

Also, find the volume of the solid generated by rotating the region R through 2π radians about the x -axis.

(b) A family of curves satisfies the differential equation $\frac{dy}{dx} = \frac{2x + 4y - 1}{x + 2y - 3}$.

Using the substitution $v = x + 2y$, show that the given differential equation gets transformed to $\frac{dv}{dx} = \frac{5(v-1)}{(v-3)}$.

Hence, find the equation satisfied by the given family of curves in terms of x and y .

Also, obtain the differential equation satisfied by the orthogonal trajectories of this family of curves.

15.(a) Let $I_n = \int \frac{dx}{(x^2 + a^2)^n}$, where $a > 0$.

Show that, $2(n-1)a^2 I_n = \frac{x}{(x^2 + a^2)^{n-1}} + (2n-3)I_{n-1}$ for $n \geq 2$.

Hence, find $\int_0^a \frac{dx}{(x^2 + a^2)^4}$.

(b) Let f be a function such that $(x^2 + 1)f''(x) + 2x f'(x) + f(x) = 0$.

Show that $(x^2 + 1)f'''(x) + 4x f''(x) + 3f'(x) = 0$.

It is given that $f(0) = 1$ and $f'(0) = 2$.

Find the Maclaurin series of $f(x)$ in ascending powers of x up to and including the term x^3 .

Using this, find an approximate value for $\int_0^{0.1} f(x) dx$.

16. Let S be the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Show that the equation of the chord joining the points $P \equiv (a \cos \theta, b \sin \theta)$ and $Q \equiv (a \cos \phi, b \sin \phi)$ is $\frac{x}{a} \cos\left(\frac{\theta+\phi}{2}\right) + \frac{y}{b} \sin\left(\frac{\theta+\phi}{2}\right) = \cos\left(\frac{\theta-\phi}{2}\right)$.

Write down the equation of the tangent drawn to S at P .

The tangents drawn to S at the points P and Q intersect at a point R .

Show that $R \equiv \left(a \frac{\cos\left(\frac{\theta+\phi}{2}\right)}{\cos\left(\frac{\theta-\phi}{2}\right)}, b \frac{\sin\left(\frac{\theta+\phi}{2}\right)}{\cos\left(\frac{\theta-\phi}{2}\right)} \right)$.

Now, suppose that the points P and Q on S are such that $\phi = \theta - \frac{\pi}{3}$. Show that R lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{4}{3}$.

Find the equations of the tangents drawn to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{4}{3}$ which are parallel to the tangent to S at P .

17. (a) Let, $f(x) = \frac{\cos x}{\sqrt{5 + \sin x}}$ for $x \in \mathbb{R}$.

(i) Show that $-\frac{1}{2} \leq f(x) \leq \frac{1}{2}$ for $x \in \mathbb{R}$.

(ii) For $0 \leq x \leq \pi$, sketch the graph of $y = f(x)$.

(b) The following table gives values of the function $f(x) = \ln(3 + x^2)$ correct to four decimal places for values of x between 0 to 6 at intervals of length 1.

x	0	1	2	3	4	5	6
$f(x)$	1.0986	1.3863	1.9459	2.4849	2.9444	3.3322	3.6636

Using Simpson's Rule, find an approximate value for $I = \int_0^6 \ln(3 + x^2) dx$.

Hence, find an approximate value for $\int_0^6 \ln(3e + ex^2) dx$.

നില/പുരണി കീര്ത്തനകൾ - പുതിയ/പഴയ പാടക്കളിട്ടമ് - New/Old Syllabus

අධ්‍යාපන පොදු සහතික පත්‍ර (උසස් පෙළ) විභාගය, 2020
කළුවිප පොත්‍රාත්මක තුරාතුරප පත්තිර (ඉයුර තුරාප) පරිශාස, 2020
General Certificate of Education (Adv. Level) Examination, 2020

உயர் கணிதம்

Higher Mathematics

11 E II

ஒரே நூலை
மூன்று மணித்தியாலம்
Three hours

අමතර කියවේම් කාලය	- මතින්න 10 දි
මොලතික වාස්ථිපු තේරුම	- 10 නිමිත්තනකൾ
Additional Reading Time	10 minutes

Use additional reading time to go through the question paper, select the questions you will answer and decide which of them you will prioritise.

Instructions:

Index Number

- * *This question paper consists of two parts; Part A (Questions 1 - 10) and Part B (Questions 11 - 17).*
- * **Part A:**
*Answer **all** questions. Write your answers to each question in the space provided. You may use additional sheets if more space is needed.*
- * **Part B:**
*Answer **five** questions only. Write your answers on the sheets provided.*
- * *At the end of the time allotted, tie the answer scripts of the two parts together so that Part A is on top of Part B and hand them over to the supervisor.*
- * *You are permitted to remove **only** Part B of the question paper from the Examination Hall.*
- * *Statistical Tables will be provided.*
- * *g denotes the acceleration due to gravity.*

For Examiners' Use only

(11) Higher Mathematics II		
Part	Question No.	Marks
A	1	
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	
	10	
B	11	
	12	
	13	
	14	
	15	
	16	
	17	
	Total	

	Total
In Numbers	
In Words	

Code Numbers	
Marking Examiner	
Checked by:	1
	2
Supervised by:	

Part A

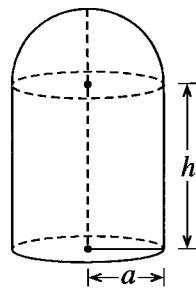
1. Let the position vectors of three points A , B and C with respect to a fixed origin O be $\mathbf{i} + \mathbf{j} - \mathbf{k}$, $2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ and $\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$, respectively. Find $\overrightarrow{AB} \times \overrightarrow{AC}$ and hence, find the area of the triangle ABC .

2. A system of forces consists of the forces $\mathbf{F}_1 = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$ and $\mathbf{F}_2 = \mathbf{i} - \mathbf{j} + \mathbf{k}$ both acting at the origin O , and $\mathbf{F}_3 = -3\mathbf{i} - 2\mathbf{j}$ acting at the point $(1, 0, 1)$. Show that the system of forces reduces to a couple and find its vector moment.

3. A solid object S is formed by fixing rigidly a uniform hemisphere of radius a and density ρ to a uniform right circular cylinder of radius a , height h and density 2ρ , as shown in the figure.

S is immersed in a homogeneous liquid of density ρ_1 with its axis vertical. When the cylinder is above the hemisphere, it floats in the liquid with only the hemisphere totally immersed and when the hemisphere is above the cylinder, it floats in the liquid with only the cylinder totally immersed.

Show that $h = \frac{2a}{3}$ and $\rho_1 = 3\rho$.



4. The position vector of a particle P at time t is given by $\mathbf{r} = t\mathbf{i} + 2\cos t\mathbf{j} - 2\sin t\mathbf{k}$. Find the velocity and the speed of P at time t , and show that the velocity makes a constant angle with the x -axis. Also, find the acceleration of P at time t .

5. A smooth uniform sphere A of mass m moving on a smooth horizontal floor collides with a smooth vertical wall. Just before the collision the velocity of A is of magnitude u and makes an angle α with the wall. Just after the impact the velocity of A makes an angle β with the wall. Show that $\tan \beta = e \tan \alpha$, where e is the coefficient of restitution between A and the wall.

Also, find the loss of kinetic energy of A due to the collision.

6. A uniform rod AB of mass m and length $2a$ with a particle of mass m fixed to it at the point B performs small oscillations about a smooth horizontal axis through A .

Show that the period of small oscillations is $\frac{8\pi}{3} \sqrt{\frac{a}{g}}$.

7. The probability that a certain team wins a match is 0.4. Find the probability that, in 5 matches, the team wins

- (i) exactly 4 matches,
- (ii) less than 4 matches.

8. It is reported that a certain insurance company receives 2 claims per day, on average. Assuming that the number of claims received per day follows a Poisson distribution, find the probability that the company receives

- (i) exactly 2 claims,
- (ii) at least 1 claim,

on a randomly selected day.

9. The probability density function $f(x)$ of a continuous random variable X is given by

$$f(x) = \begin{cases} ax - bx^2 & , \text{ for } 0 \leq x \leq 2, \\ 0 & , \text{ otherwise,} \end{cases}$$

where a and b are constants. It is given that $E(X) = \frac{1}{3}$. Find the values of a and b .

10. The data collected for a period of 30 days, from a quality control process conducted by a company manufacturing toy cars are summarized as follows:

Number of toy cars rejected	0	1	2	3	4
Number of days	4	6	7	10	3

Let X be the number of toy cars rejected on a randomly selected day. Obtain the probability mass function of X and hence, find $E(X)$ and $\text{Var}(X)$.

නව/පැරණි නිර්දේශය - ප්‍රතිය/පැමුය පාටත්තිට්ම - *New/Old Syllabus*

අධ්‍යයන පොදු සහතික පත්‍ර (උසස් පෙළ) විභාගය, 2020
කළඹිල් පොත්‍රත් තුරාතුරප් පත්තිර (ඉයර් තුරප් පරිශ්‍යාස, 2020
General Certificate of Education (Adv. Level) Examination, 2020

உயச் சுதா	II
உயர் கணிதம்	II
Higher Mathematics	II

11 E II

Part B

* Answer **five** questions only.

11. Three forces \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 act at the points with the position vectors \mathbf{r}_1 , \mathbf{r}_2 and \mathbf{r}_3 respectively are given below:

Point of action	Force
$r_1 = i + k$	$F_1 = j - k$
$r_2 = i + j$	$F_2 = -i + k$
$r_3 = j + k$	$F_3 = i - j$

Show that this system of forces is equivalent to a couple and find its vector moment.

Now, the force \mathbf{F}_3 is replaced by a force \mathbf{F}_4 such that the system of forces consisting of \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_4 is in equilibrium. Find \mathbf{F}_4 and its line of action in the form $\mathbf{r} = \mathbf{r}_0 + \lambda \mathbf{F}$, where \mathbf{r}_0 and \mathbf{F} are to be determined and λ is a parameter.

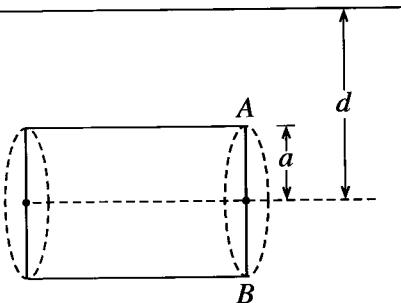
The system of forces consisting of \mathbf{F}_1 , $2\mathbf{F}_2$ and $3\mathbf{F}_3$ acting at \mathbf{r}_1 , \mathbf{r}_2 and \mathbf{r}_3 respectively, reduces to a single force \mathbf{R} together with a couple of vector moment \mathbf{G} , when reduced at the origin O . Find \mathbf{R} and \mathbf{G} .

Hence, show that this system of forces reduces to a single resultant force.

12. A circular lamina of radius a is immersed in a homogeneous liquid with its centre at a depth $h (> a)$ below the free surface of the liquid. Show that the centre of pressure of the lamina is on its vertical diameter at a distance $\frac{a^2}{4h}$ below the centre.

A right circular cylindrical tank of radius a with a circular lid of radius a , smoothly hinged at a point A on the circumference of the lid, is filled with a homogeneous liquid of density ρ and kept closed by a smooth lock at the point B diametrically opposite to A . This tank is immersed in a homogeneous liquid of density $\frac{\rho}{2}$ with AB vertical, A above B , and its axis horizontal and at a depth $d(>a)$ from the free surface of the liquid. (See the figure)

Now, the lock is released. Show that the lid remains closed if $d > \frac{9a}{4}$.



13. A particle P of mass m is projected vertically upwards with speed u from a point O . It is subject to a resistive force of magnitude mkv^2 , where v is the speed of the particle.

Show that $\frac{dv}{dt} + g + kv^2 = 0$ for the upward motion of P .

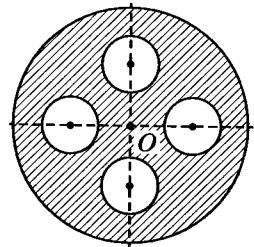
Show that the time taken by P to reach its greatest height H above O is $\frac{1}{\sqrt{gk}} \tan^{-1} \left(\sqrt{\frac{k}{g}} u \right)$ and that $H = \frac{1}{2k} \ln \left(1 + \frac{ku^2}{g} \right)$.

Also, find the velocity of P , in terms of u , k and g , when it returns to O .

14. Two smooth uniform spheres A and B of equal mass and equal radius, moving on a smooth horizontal floor, collide with each other. Just before the collision, the velocities of A and B are $u(3\mathbf{i} + 4\mathbf{j})$ and $u(-\mathbf{i} + \frac{1}{2}\mathbf{j})$, respectively and the line joining the centres of A and B is parallel to \mathbf{i} . The coefficient of restitution between A and B is $\frac{\sqrt{3}}{2}$. Find the velocities of A and B just after the collision and show that they are perpendicular to each other.

Also, find the impulse on B from A and the loss of kinetic energy due to the collision.

15. A uniform wheel is in the shape of a disc of radius a , centre O with four identical small discs of radius $\frac{a}{4}$ removed from it. The centres of the four small discs lie on two perpendicular diameters of the wheel and all are at a distance $\frac{a}{2}$ from O as shown in the figure.



Show that the moment of inertia of the wheel about the axis through O perpendicular to its plane is $\frac{55}{96}Ma^2$, where M is the mass of the wheel.

The wheel is placed on a rough horizontal floor and given an impulse horizontally so that it starts sliding with speed u and no angular speed. The wheel performs sliding and rolling for a period of time T and then, pure rolling begins. Find T in terms of u , g and μ where μ is the coefficient of friction between the wheel and the floor.

16. A discrete random variable X has probability distribution given below:

x	0	1	2	3	4
$P(X=x)$	p	q	r	0.2	0.1

where p , q and r are constants.

It is given that $E(X) = 1.5$ and $E(X^2) = 4.1$.

Find each of the following:

(i) The values of p , q and r .

(ii) $P\left(\frac{1}{2} < X < \frac{7}{2}\right)$

(iii) $\text{Var}(X)$

(iv) $E(3 - 2X)$ and $\text{Var}(3 - 2X)$

Let X_1 and X_2 be two independent discrete random variables having the same probability distribution as that of X given above, and let $Y = X_1 + 2X_2$.

(v) Find $P(Y = k)$ for $k = 0, 1, 2, 3, 4$, and hence, find $P(Y \geq 5)$.

(vi) Write down the value of $E(Y)$.

17.(a) A continuous random variable X has probability density function $f(x)$ given by

$$f(x) = \begin{cases} \frac{15}{2} x^2(1-x^2) & , \text{ for } 0 \leq x \leq 1, \\ 0 & , \text{ otherwise.} \end{cases}$$

Find $E(X)$ and $\text{Var}(X)$.

Also, find $P\left(\frac{1}{2} < X < 1\right)$.

Let Y be the random variable defined by $Y = 3X - 2$.

Find $E(Y)$ and $\text{Var}(Y)$.

(b) The heights of employees of a certain company are normally distributed with mean 160 cm and standard deviation 5 cm.

- (i) Find the probability that the height of a randomly selected employee is greater than 165 cm and less than 170 cm.
- (ii) Given that an employee selected at random has a height greater than 165 cm, find the probability that the employee has a height greater than 170 cm.

* * *