

Department of Examinations, Sri Lanka

தமிழ்நாடு கல்வி மற்றும் பார்வை துறை விஜயகார, 2016 முதல்தர கல்விப் பொதுத் துறைத் துறை (உயிர் துறை)ப் பார்வை, 2016 ஒக்டோபர் General Certificate of Education (Adv. Level) Examination, August 2016

ரூபாய்ந வீட்டுவும் |
இரசாயனவியல் |
Chemistry |

02 S I

இரண்டு மணித்தியாலம்
Two hours

සංස්කරණය:

- * අවබෝධන ව්‍යුවත් සපයා ඇත.
- * මෙම ප්‍රශ්න පත්‍රය පිටු 08 කින් පුක්ත වේ.
- * සියලු ම ප්‍රශ්නවලට පිළිතුරු සපයන්න.
- * ගණක සතුනු භාවිතයට ඉඩි දෙනු නොලැබේ.
- * උත්තර පත්‍රයේ තියමිත ය්‍යානයේ එකිනී විභාග අංකය ලියන්න.
- * උත්තර පත්‍රයේ පිටුපාඨ දී ඇති අනෙක් උපදෙස් සැලකිලිමත් ව තියවන්න.
- * 1 සිට 50 තෙක් එක එක ප්‍රශ්නයට (1),(2),(3),(4),(5) යන පිළිතුරුවලින් සිවියරු ශේෂ ඉතාවත් ගැඹුපෙන පිළිතුරු තොරා ගෙන, එය උත්තර පත්‍රයේ පිටුපාඨ පුක්තවෙන උපදෙස් පරිදි කිරීයක් (X) යොදු දැක්වන්න.

$$\text{සුරච්ච වියුම් තියෙනු } R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$\text{ஆலகாடிரே தியதை } N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$$

$$\text{ප්ලේන්ක්ගේ තියනය} \quad h = 6.626 \times 10^{-34} \text{ J s}$$

$$\text{ആലോകന്മാർഗ്ഗം പ്രവീണയാണ്} \quad c = 3 \times 10^8 \text{ m s}^{-1}$$

6. KIO_3 0.60 g හියැයික් ජලයේ දියකර එයට වැඩිපුර KI එකතු කරන ලදී. KIO_3 සම්පූර්ණයෙන් ම් I_3^- බවට පත් කිරීමට අවශ්‍ය වන අවම 3.0 mol dm^{-3} HCl ප්‍රමාණය වන්නේ, ($\text{O} = 16$, $\text{K} = 39$, $\text{I} = 127$)
 (1) 1.0 cm^3 (2) 4.7 cm^3 (3) 5.6 cm^3 (4) 10.2 cm^3 (5) 33.6 cm^3

7. 25°C දී MnS(s) හි දාවානා ගුණය, K_{sp} $5.0 \times 10^{-15} \text{ mol}^2 \text{ dm}^{-6}$ වේ. $\text{H}_2\text{S(aq)}$ හි අම්ල විස්ටන නියත K_1 හා K_2 පිළිවෙළින් $1.0 \times 10^{-7} \text{ mol dm}^{-3}$ හා $1.0 \times 10^{-13} \text{ mol dm}^{-3}$ වේ.
 $\text{MnS(s)} + 2\text{H}^+(\text{aq}) \rightleftharpoons \text{Mn}^{2+}(\text{aq}) + \text{H}_2\text{S(aq)}$ ප්‍රතික්‍රියාවේ සමතුලිතතා නියතය, K_c වනුයේ,
 (1) 2.0×10^{-16} (2) 5.0×10^{-8} (3) 20 (4) 5.0×10^5 (5) 2.0×10^7

8. A නමැති කාබනික සංයෝගයේ බර අනුව 39.97% ස් C, 6.73% ස් H හා 53.30% ස් O අඩංගු වේ. A හි ආනුෂ්වලික සූත්‍රය කුමක් ද? ($\text{H} = 1$, $\text{C} = 12$, $\text{O} = 16$)
 (1) $\text{C}_6\text{H}_8\text{O}_2$ (2) $\text{C}_2\text{H}_4\text{O}_2$ (3) $\text{C}_3\text{H}_7\text{O}_3$ (4) $\text{C}_3\text{H}_6\text{O}_3$ (5) CH_2O

9. ලිතියම් (Li) සහ එහි සංයෝගවල රසායනය සම්බන්ධයෙන් පහත සඳහන් කුමත වගන්තිය අසන්න වේ ද?
 (1) ලිතියම්, ඔක්සිජන් වායුව සමඟ ප්‍රතික්‍රියා කර Li_2O ලබා දේ.
 (2) I කාණ්ඩියේ ලෝහ අතුරෙන් ඉහළ ම දුවාකය ඇත්තේ ලිතියම්වලට ය.
 (3) LiOH හි හාස්මිකතාව NaOH හි හාස්මිකතාවට වඩා අඩු ය.
 (4) I කාණ්ඩියේ කාබනේට් අතුරෙන් අඩුම තාපස්ථාධිතාවක් ඇත්තේ Li_2CO_3 වලට ය.
 (5) LiCl පහතසීජ පරික්ෂාවට හාජනය කළ විට නිල් පැහැයක් ලබා දේ.

10. F_2NNO අනුවට වඩාත් ම ජ්‍යායි ලුවිස් වුපුහලේ N^{\oplus} සහ N^{\ominus} පරිමානුවල ව්‍යුහාත්මක ප්‍රතිකරණ අවස්ථා වනුයේ පිළිවෙළින්,

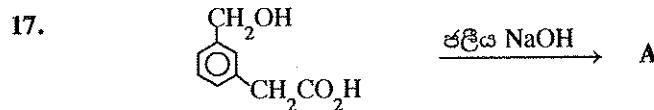
$$\text{සැකිල්ස. } \text{F}-\overset{\text{F}}{\underset{\text{C}}{\text{N}}}^{\oplus}-\text{N}^{\ominus}-\text{O}$$

 (1) +2 සහ +2 (2) +1 සහ +3 (3) +2 සහ +3 (4) +1 සහ +2 (5) +3 සහ +1

11. $\text{CH}_4(\text{g}) + \text{CO}_2(\text{g}) \rightleftharpoons 2\text{CO}(\text{g}) + 2\text{H}_2(\text{g})$ යන ප්‍රතික්‍රියාව සලකන්න.
 25°C දී 0.60 mol $\text{CH}_4(\text{g})$ හා 1.00 mol $\text{CO}_2(\text{g})$, පරිමාව 1.00 dm^3 වූ සංවෘත දාඩ හාජනයකට ඇතුළු කර පද්ධතිය සමතුලිතතාවට එළැඳිමට ඉඩ හැරිය විට 0.40 mol $\text{CO}(\text{g})$ භැඳුණි. ප්‍රතික්‍රියාවේ සමතුලිතතා නියතය, K_c ($\text{mol}^2 \text{ dm}^{-6}$) හි අගය වනුයේ,
 (1) 0.04 (2) 0.08 (3) 0.67 (4) 1.20 (5) 8.00

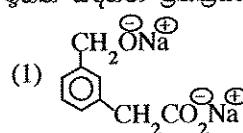
12. Diamminebromidodicarbonylhيدridocobalt(III) chloride වල රසායනික සූත්‍රය IUPAC නීති අනුව වන්නේ,
 (1) $[\text{Co}(\text{CO})_2\text{BrH}(\text{NH}_3)_2]\text{Cl}$ (2) $[\text{CoBr}(\text{CO})_2(\text{NH}_3)_2\text{H}]\text{Cl}$
 (3) $[\text{Co}(\text{NH}_3)_2\text{Br}(\text{CO})_2\text{H}]\text{Cl}$ (4) $[\text{CoBr}(\text{CO})_2\text{H}(\text{NH}_3)_2]\text{Cl}$
 (5) $[\text{CoHBr}(\text{CO})_2(\text{NH}_3)_2]\text{Cl}$

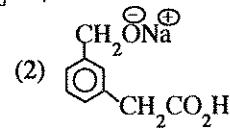
13. ගල්අගුරු නියැයික සල්ගර් ප්‍රමාණය නිර්මාත පහත දැක්වෙන ක්‍රියාලිලිවෙළ යොදා ගන්නා ලදී.
 ස්කන්ධය 1.60 g වූ ගල්අගුරු නියැයික් ඔක්සිජන් වායුවෙන් දහනය කරන ලදී. සඳුනු මුළු SO_2 වායුව H_2O_2 දාවානායෙන් තුළ එකතු කර ගන්නා ලදී. මෙම දාවානා 0.10 mol dm^{-3} NaOH පමිග අනුමාපනය කරන ලදී. අන්ත ලක්ෂණයට එළැඳිමට අවශ්‍ය වූ NaOH පරිමාව 20.0 cm^3 විය. ගල්අගුරු නියැයියේ සල්ගර් ප්‍රතිග්‍රහ වනුයේ, ($S = 32$)
 (1) 1.0 (2) 2.0 (3) 4.0 (4) 6.0 (5) 8.0

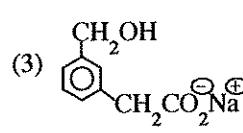

14. පහත ප්‍රතික්‍රියාව මගින් එතිලින්, $\text{C}_2\text{H}_4(\text{g})$ හි දහනය දැක්වෙයි.

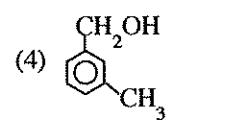
$$\text{C}_2\text{H}_4(\text{g}) + 3\text{O}_2(\text{g}) \longrightarrow 2\text{CO}_2(\text{g}) + 2\text{H}_2\text{O}(\text{g}) \quad \Delta\text{H} = -1323 \text{ kJ mol}^{-1}$$

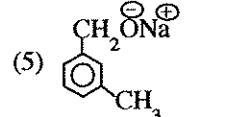
 මෙම දහනයේ දී වායුමය අවස්ථාවේ පවතින ජලය, $\text{H}_2\text{O}(\text{g})$ වෙනුවට ද්‍රව්‍ය අවස්ථාවේ පවතින ජලය, $\text{H}_2\text{O(l)}$ සඳහා නම්, ΔH හි අගය (kJ mol^{-1} වලින්) කුමක් වේ ද? ($\text{H}_2\text{O(l)} \longrightarrow \text{H}_2\text{O(g)}$ සඳහා ΔH අගය වනුයේ -44 kJ mol^{-1} ය.)
 (1) -1235 (2) -1279 (3) -1323 (4) -1367 (5) -1411


15. 25°C දී බෙන්සින්හි වාෂ්ප පිඩිනය 12.5 kPa වේ. මෙම උෂ්ණත්වයේ දී වාෂ්පහිලි තොටින නොදැන්නා ද්‍රව්‍යයක් බෙන්සින් 100 cm^3 ක දීය කළ විට දාවානායේ වාෂ්ප පිඩිනය 11.25 kPa බව සොයා ගන්නා ලදී. මෙම දාවානාය තුළ එම නොදැන්නා ද්‍රව්‍යයෙහි මුවුල හාගය වනුයේ,
 (1) 0.05 (2) 0.10 (3) 0.50 (4) 0.90 (5) 0.95


16. දුබල අම්ලයක් ($K_a = 4.0 \times 10^{-7} \text{ mol dm}^{-3}$) ප්‍රභාව සහෙළයක් සමඟ මිශ්‍රීමෙන් ස්වාරක්ෂක දාව්‍යනයක් සාදා ගත හැක. pH = 6 වන ස්වාරක්ෂක දාව්‍යනයක් සාදා ගැනීමට අවශ්‍ය වන අම්ල සහ හස්ම සාන්දුන් අතර අනුපාතය (අම්ල : හස්ම) වන්නේ,


(1) 1 : 1 (2) 2 : 1 (3) 2 : 5 (4) 5 : 1 (5) 5 : 2

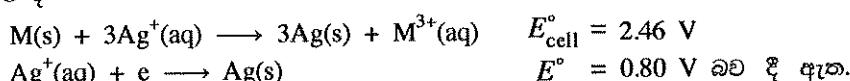



ඉහත සඳහන් ප්‍රතික්‍රියාවේ ප්‍රධාන එලය A වනුයේ,

(1)

(2)

(3)


(4)

(5)

18. $\text{NO}_2(g) + \text{CO}(g) \rightarrow \text{NO}(g) + \text{CO}_2(g)$, ප්‍රතික්‍රියාව සඳහා දිගුතා නියමය වනුයේ, දිගුතාව = $k[\text{NO}_2]^2$ ය. දී අති උෂ්ණත්වයක දී මෙම ප්‍රතික්‍රියාව සිදු වෙමින් පවතින සංඛ්‍යා දායා භාජනයක් තුළට $\text{CO}(g)$ ස්වල්පයක් ඇතුළු කළ විට සිදු විය හැකි වෙනස්වේමි පිළිබඳ ව පහත සඳහන් කුමන වගන්තිය සහ්‍ය වේ ද?

(1) k සහ ප්‍රතික්‍රියාවේ දිගුතාව යන දෙකම වැඩි වේ.
 (2) k සහ ප්‍රතික්‍රියාවේ දිගුතාව යන දෙකම නොවෙනස්ව පවතී.
 (3) k සහ ප්‍රතික්‍රියාවේ දිගුතාව යන දෙකම අඩු වේ.
 (4) k වැඩි වන අතර ප්‍රතික්‍රියාවේ දිගුතාව නොවෙනස්ව පවතී.
 (5) k නොවෙනස්ව පවතින අතර ප්‍රතික්‍රියාවේ දිගුතාව වැඩි වේ.

19. 25°C දී

25°C දී $\text{M}^{3+}(\text{aq}) + 3\text{e} \rightarrow \text{M(s)}$ අර්ථ ප්‍රතික්‍රියාවේ සම්මත මක්සිහරණ විහාරය වනුයේ,

(1) -1.66 V (2) -0.06 V (3) 0.06 V (4) 1.66 V (5) 3.26 V

20. N_2O_3 අණුව සඳහා සම්පූර්ණ ව්‍යුහ කොපමත ඇදිය හැකි ද? (සැකිල්ල, $\text{O}-\overset{\text{O}}{\underset{\text{N}}{\text{N}}}-\text{O}$)

(1) 2 (2) 3 (3) 4 (4) 5 (5) 6

21. ආන්තරික ලෝහ හා එවායේ සංයෝග පිළිබඳ ව මින් කුමන වගන්තිය සහ්‍ය වේ ද?

(1) කොපර හි ඉලෙක්ට්‍රොන වින්‍යාසය $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$ වේ.
 (2) d -ඉලෙක්ට්‍රොන ඇති සියලු ම මූල්‍යවා, 'ආන්තරික මූල්‍යවා' වේ.
 (3) TiO_2 හි Ti වල ඉලෙක්ට්‍රොන වින්‍යාසය හා ScCl_3 හි Sc වල ඉලෙක්ට්‍රොන වින්‍යාසය එකම වේ.
 (4) දෙන ලද ආන්තරික ලෝහයක මක්සිහිවල අම්ලිකතාව, ලෝහ අයනයෙහි මක්සිහරණ අවස්ථාව වැඩිවන විට අඩු වේ.
 (5) $3d$ ලෝහයේ ආන්තරික ලෝහවලට ක්වෙන්වම් අංකය $m_f = \pm 3$ නිඩිය හැක.

22. නියන්ත උෂ්ණත්වයක ඇති සාධනයක් තුළ $\text{PCl}_3(\text{g}) + 3\text{NH}_3(\text{g}) \rightleftharpoons \text{P}(\text{NH}_2)_3(\text{g}) + 3\text{HCl}(\text{g})$ යන සම්බන්ධතාව පවතී. උෂ්ණත්වය නියන්තව පවත්වාගෙන මෙම හාර්තයේ පරිමාව වැඩි කළේ නම්, ඉදිරි හා ආපසු ප්‍රතිත්වියාවන්හි සිංහාවල සිදුවිය තැකි වෙනස්කම් පිළිබඳ ව පහත සඳහන් කුමක් අනුමත වේ ද?

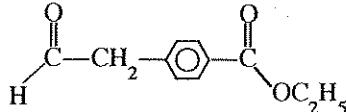
ඉදිරි ප්‍රතිඵ්‍යාච

ආරු ප්‍රතිචිත්‍යාව

(1) වැඩි වේ.	අඩු වේ.
(2) අඩු වේ.	වැඩි වේ.
(3) අඩු වේ.	අඩු වේ.
(4) වැඩි වේ.	වැඩි වේ.
(5) වෙනස් නොවේ.	වෙනස් නොවේ.

23. සහ ඇමෝෂ්නියම් ක්ලෝරයිඩ්, $\text{NH}_4\text{Cl(s)}$, 25°C දී ජලයේ දිය කළ විට දාවනයේ උෂ්ණත්වය අඩු වේ. පහත සඳහන් කුමක් මෙම කියාවලියෙහි ΔH° හා ΔS° පදනා සහා වේ ද?

$$\Delta H^\circ$$


ASO

(1) දන	දන
(2) දන	සාරු
(3) දන	ඇතාප
(4) සාරු	දන
(5) සාරු	සාරු

24. 3d ආන්තරික ලෝහ සහ ඒවායේ සංයෝග පිළිබඳ ව පහත සඳහන් කළන වගන්තිය දැක්කන වේ ද?

- (1) සමහර ලෝහවල ඔක්සයිඩ් උග්‍යයුණි වේ.
- (2) සමහර ලෝහ සහ ලෝහ ඔක්සයිඩ් උත්තේරුක ලෙස කරුණාන්තවල ගෙදා ගනු ලැබේ.
- (3) $3d$ ආන්තරික ලෝහවල විද්‍යුත් සාර්තාව 4s ලෝහවල විද්‍යුත් සාර්තාවට වඩා ඉහළ ය.
- (4) +7 ඔක්සයිකරණ අවස්ථාව පෙන්වුම් කරන්නේ එක මූලුද්‍යවායක් පමණි.
- (5) MnO_4^- , $Cr_2O_7^{2-}$ වැනි ඔක්සයිඩ් මූලුද්‍යවායක් දෙව්දි.

25.

ඉහත පදනම් සංයෝගය වැඩිපුර CH_3MgBr සමඟ ප්‍රතිත්වියා කර ජලවීවේදීනය කළ විට ලැබෙන ප්‍රධාන එලය විනයේ.

(1) HOCH₂CH₂--C(CH₃)₂-CH₂OH

(2) CH₃-C(H)-CH₂--C(=O)-CH₃

(3) HOCH₂CH₂--C(=O)-CH₃

(4) CH₃-C(H)-CH₂--C(=O)-OC₂H₅

(5) CH₃-C(H)-CH₂--C(CH₃)₂-CH₂OH

26. $\text{CH}_3\text{COCH}_2\text{CONH}_2$ $\xrightarrow[(2) \text{H}^+/\text{H}_2\text{O}]{(1) \text{LiAlH}_4}$ X $\xrightarrow{\text{CH}_3\text{COCH}_3}$ Y

ඉහත සඳහන් ප්‍රතිඵ්‍යා අනුපිළිවෙළෙහි X සහ Y හි ව්‍යුහ පිළිවෙළින් වනුයේ,

(1) $\text{CH}_3\text{CH}(\text{OH})\text{CH}_2\text{CONH}_2$, $\text{CH}_3\text{CH}(\text{OH})\text{CH}_2\text{CON}=\text{C}(\text{CH}_3)_2$
 (2) $\text{CH}_3\text{CH}(\text{OH})\text{CH}_2\text{CH}_2\text{NH}_2$, $\text{CH}_3\text{CH}(\text{OH})\text{CH}_2\text{CH}_2\text{N}=\text{C}(\text{CH}_3)_2$
 (3) $\text{CH}_3\text{COCH}_2\text{CH}_2\text{NH}_2$, $\text{CH}_3\text{COCH}_2\text{CH}_2\text{N}=\text{C}(\text{CH}_3)_2$
 (4) $\text{CH}_3\text{COCH}_2\text{CH}_2\text{NH}_2$, $\text{CH}_3\text{COCH}_2\text{CH}_2\text{NHCOCH}_3$
 (5) $\text{CH}_3\text{CH}(\text{OH})\text{CH}_2\text{CH}_2\text{NH}_2$, $\text{CH}_3\text{CH}(\text{OH})\text{CH}_2\text{CH}_2\text{NHCOCH}_3$

27. NH_3 සම්බන්ධව පහත සඳහන් කුමන වගන්තිය අයකින වේ ද?

- (1) NH_3 වලට ත්‍රියා කළ හැක්කේ හස්මයක් ලෙස පමණි.
- (2) NH_3 , ඔක්සිජන් වල දහනය වී N_2 වායුව ලබා දේ.
- (3) NH_3 නොස්ලර් ප්‍රතිකාරය සමඟ දුනුරු වර්ණයක් ලබා දේ.
- (4) NH_3, Li සමඟ ප්‍රතිත්‍රියා කර Li_3N සහ H_2 වායුව ලබා දේ.
- (5) NH_3 වල බන්ධන කෝණය $109^\circ 28'$ ට වඩා අඩුවන තමුත්, NF_3 වල බන්ධන කෝණයට වඩා වැඩි වේ.

28. $\text{Zn}^{2+}(\text{aq})/\text{Zn}(\text{s})$ සහ $\text{Sn}^{2+}(\text{aq})/\text{Sn}(\text{s})$ ඉලෙක්ට්‍රෝඩ හාටිත කර විද්‍යුත් රසායනික කෝෂයක් සාදන ලදී. පහත සඳහන් කුමන වගන්තිය මෙම කෝෂයෙහි ත්‍රියාවලිය තිබුරු ව විස්තර කරයි ද?

$$E^\circ_{\text{Zn}^{2+}(\text{aq})/\text{Zn}(\text{s})} = -0.76 \text{ V}, \quad E^\circ_{\text{Sn}^{2+}(\text{aq})/\text{Sn}(\text{s})} = -0.14 \text{ V}$$

- (1) Zn ඉලෙක්ට්‍රෝඩය කැනේවිය වේ, Zn ඔක්සිජන් විසින් Zn^{2+} වෙත ගලා යයි.
- (2) Zn ඉලෙක්ට්‍රෝඩය කැනේවිය වේ, Sn ඔක්සිජන් විසින් Sn^{2+} වෙත ගලා යයි.
- (3) Sn ඉලෙක්ට්‍රෝඩය ඇතෙක්විය වේ, $\text{Zn}^{2+}(\text{aq})$ ඔක්සිජන් විසින් Zn සිට Sn වෙත ගලා යයි.
- (4) Zn ඉලෙක්ට්‍රෝඩය ඇතෙක්විය වේ, Zn ඔක්සිජන් විසින් Zn^{2+} වෙත ගලා යයි.
- (5) Zn ඉලෙක්ට්‍රෝඩය ඇතෙක්විය වේ, $\text{Sn}^{2+}(\text{aq})$ ඔක්සිජන් විසින් Sn සිට Zn වෙත ගලා යයි.

29. පහත සඳහන් කුමන වගන්තිය $\text{C}_6\text{H}_5\text{NH}_2$ පිළිබඳ ව අයකින වේ ද?

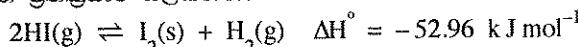
- (1) CH_3COCl සමඟ ප්‍රතිත්‍රියා කර එමඩිඩ්‍රයක් සාදයි.
- (2) ජලය NaOH සමඟ ර්‍ත් කළ විට ඇමෙන්තියා වායුව පිට කරයි.
- (3) බුව්මින් දියර සමඟ පුදු පැහැති අවක්ෂේපයක් ලබා දේ.
- (4) නයිට්‍රූස් අම්ලය සමඟ ප්‍රතිත්‍රියා කර තුළ විට පිනෙක්ලයක් ලබා දේ.
- (5) $\text{C}_6\text{H}_5\text{CH}_2\text{NH}_2$ වලට වඩා හාස්මිකතාව අඩු ය.

30. $\text{CH}_3\text{COOAg}(\text{s})$ හා ස්පර්ශ වේමින් පවතින සන්නාප්ති සිල්වර් ඇයිටෙට්‍රි දාව්න හතරක් ඩිකර හතරක අඩංගු වේ. පහත සඳහන් දාව්න එක් එක් බිකරයට වෙන වෙනම එකතු කළ විට සිල්වර් ඇයිටෙට්‍රි දාව්නකාව වෙනස් වන්නේ කෙසේ ද?

	CH_3COONa	තනුක HNO_3	NH_4OH	AgNO_3
(1)	වැඩි වේ.	වැඩි වේ.	වැඩි වේ.	වැඩි වේ.
(2)	අඩු වේ.	අඩු වේ.	අඩු වේ.	අඩු වේ.
(3)	අඩු වේ.	වැඩි වේ.	වැඩි වේ.	අඩු වේ.
(4)	අඩු වේ.	වැඩි වේ.	අඩු වේ.	අඩු වේ.
(5)	අඩු වේ.	අඩු වේ.	වැඩි වේ.	අඩු වේ.

● අංක 31 සිට 40 කෙන් එක් එක් ප්‍රශ්නය සඳහා දී ඇති (a), (b), (c) සහ (d) යන ප්‍රතිවාර හතර අතුරෙන්, එකක් හෝ වැඩි සංඛ්‍යාවක් හෝ තිබුරු දී ඇති ප්‍රතිවාරය/ප්‍රතිවාර කවරේ දැයි කෝරු ගන්න.

- (a) සහ (b) පමණක් තිබුරු නම් (1) මත ද
- (b) සහ (c) පමණක් තිබුරු නම් (2) මත ද
- (c) සහ (d) පමණක් තිබුරු නම් (3) මත ද
- (d) සහ (a) පමණක් තිබුරු නම් (4) මත ද


වෙනත් ප්‍රතිවාර සංඛ්‍යාවක් හෝ සංයෝගනයක් හෝ තිබුරු නම් (5) මත ද

උත්තර පත්‍රයෙහි දැක්වෙන උපදෙස් පරිදි ලකුණු කරන්න.

ඉහත උපදෙස් සම්පිට්‍රික්‍රියා

(1)	(2)	(3)	(4)	(5)
(a) සහ (b) පමණක් තිබුරුදීය	(b) සහ (c) පමණක් තිබුරුදීය	(c) සහ (d) පමණක් තිබුරුදීය	(d) සහ (a) පමණක් තිබුරුදීය	වෙනත් ප්‍රතිවාර සංඛ්‍යාවක් හෝ සංයෝගනයක් හෝ තිබුරුදීය

31. පහත දී ඇති ප්‍රතිත්‍රියාව සලකන්න.

මෙම ප්‍රතිත්‍රියාව සංඛ්‍යා හාර්නයක සිදු වන විට පහත කුමන වගන්තිය/වගන්ති තිබුරු වේ ද?

- (a) උෂ්ණත්වය වැඩි කළ විට සහ පිඩිනය අඩු කළ විට සමතුලිතාව දකුණුව යොමු කෙරේ.
- (b) උෂ්ණත්වය වැඩි කළ විට සහ පිඩිනය අඩු කළ විට සමතුලිතාව වමට යොමු කෙරේ.
- (c) උෂ්ණත්වය අඩු කළ විට සහ පිඩිනය වැඩි කළ විට සමතුලිතාව දකුණුව යොමු කෙරේ.
- (d) උෂ්ණත්වය අඩු කළ විට සහ පිඩිනය වැඩි කළ විට සමතුලිතාව වමට යොමු කෙරේ.

32. $\text{CH}_2 = \text{CHCHO}$ අණුව පිළිබඳ ව පහත සඳහන් කුමන වගන්තිය/වගන්ති සකස වේ ද?

- කාබන් පරමාණු තුනම sp^2 මුදුමිකරණය වේ ඇත.
- කාබන් පරමාණු තුනම සරල රේඛාවක පිහිටයි.
- කාබන් පරමාණු තුනම එකම තලයේ නොපිහිටයි.
- කාබන් පරමාණු තුනම එකම තලයේ පිහිටයි.

33. සොල්වේ කුමන හා සම්බන්ධ සමහර ප්‍රතික්‍රියා වන්නේ,

- $\text{CaCO}_3 \xrightarrow{\Delta} \text{CaO} + \text{CO}_2$
- $\text{NaCl} + \text{NH}_3 + \text{H}_2\text{O} + \text{CO}_2 \longrightarrow \text{NaHCO}_3 + \text{NH}_4\text{Cl}$
- $\text{Na}_2\text{CO}_3 + \text{CO}_2 + \text{H}_2\text{O} \longrightarrow 2\text{NaHCO}_3$
- $\text{Ca}(\text{OH})_2 + 2\text{NH}_4\text{Cl} \longrightarrow \text{CaCl}_2 + 2\text{NH}_4\text{OH}$

34. මූලික ප්‍රතික්‍රියාවක දිසුතාව සම්බන්ධයෙන් පහත සඳහන් කුමන වගන්තිය/වගන්ති සැමවම සකස වේ ද?

- උෂේණත්වය වැඩි කිරීමෙන් දිසුතාව වැඩි කළ හැක.
- ප්‍රතික්‍රියා මාධ්‍යයෙන් එල ඉවත් කිරීමෙන් දිසුතාව වැඩි කළ හැක.
- ප්‍රතික්‍රියාවේ දිසුතාව, වඩාත් ම සෙමින් සිදු වන පිටවරේහි දිසුතාව මත රඳා පවතී.
- $\Delta G < 0$ කිරීමෙන් ප්‍රතික්‍රියාවේහි දිසුතාව වැඩි කළ හැක.

35. 4-pentenal අණුව පිළිබඳ ව පහත සඳහන් කුමන වගන්තිය/වගන්ති සකස වේ ද?

- ඡ්‍යාමිනික සමාවයවිකතාව පෙන්වයි.
- HBr සමග ප්‍රතික්‍රියා කළ විට ලැබෙන සංයෝගය ප්‍රකාශ සමාවයවිකතාව නොපෙන්වයි.
- HBr සමග ප්‍රතික්‍රියා කළ විට ලැබෙන සංයෝගය ප්‍රකාශ සමාවයවිකතාව පෙන්වයි.
- CH_3MgBr සමග ප්‍රතික්‍රියා කළ විට ලැබෙන එලය ප්‍රකාශ සමාවයවිකතාව පෙන්වයි.

36. නයිට්‍රික් අම්ලය සම්බන්ධව කුමන වගන්තිය/වගන්ති අසකස වේ ද?

- සංයුද්ධ නයිට්‍රික් අම්ලය ලා කහ දුයයකි.
- නයිට්‍රික් අම්ලයේ සියලු ම $\text{N}-\text{O}$ බන්ධනවල දිග සමාන ය.
- නයිට්‍රික් අම්ලයට ඔක්සිජාරකයක් ලෙස ක්‍රියා කළ නොහැක.
- එය වැදගත් පොහොරක් වන ඇමෙරිනියම් නයිට්‍රිට්‍රේට් නිෂ්පාදනයේ දී හාවිත වේ.

37. $\text{C}(\text{s}), \text{O}_2(\text{g})$ සමග ප්‍රතික්‍රියා කර $\text{CO}_2(\text{g})$ 0.40 mol කාප විට 40 kJ තාප ප්‍රමාණයක් පිට වේ. පහත සඳහන් කුමන වගන්තිය/වගන්ති මෙම පද්ධතිය සඳහා සකස වේ ද? ($\text{C} = 12, \text{ O} = 16$)

- $\text{CO}_2(\text{g})$ මුළුයක් $\text{C}(\text{s})$ සහ $\text{O}_2(\text{g})$ වලට විකරිනය කිරීම සඳහා 100 kJ තාප ප්‍රමාණයක් අවශ්‍ය වේ.
- $\text{CO}_2(\text{g})$ 11 g ක් සඳහා 25 kJ තාප ප්‍රමාණයක් අවශ්‍ය වේ.
- එළයන්හි එන්තැල්පි අයයයන්ගේ එකතුව ප්‍රතික්‍රියකවල එන්තැල්පි අයයයන්ගේ එකතුවට වඩා අඩු වේ.
- එළයන්හි එන්තැල්පි අයයයන්ගේ එකතුව ප්‍රතික්‍රියකවල එන්තැල්පි අයයයන්ගේ එකතුවට වඩා වැඩි වේ.

38. මූලික ප්‍රතික්‍රියාවක තුළින රසායනීක සම්කරණය සඳහා පහත සඳහන් කුමන වගන්තිය/වගන්ති වේ ද?

- ප්‍රතික්‍රියාවේ පෙළ සහ අණුකතාව එකම වේ.
- ප්‍රතික්‍රියාවේ පෙළ අණුකතාවට වඩා අඩු වේ.
- ප්‍රතික්‍රියාවේ පෙළ අණුකතාවට වඩා වැඩි වේ.
- අණුකතාව ගුන්‍ය විය නොහැක.

39. පහත දී ඇති අණුව පිළිබඳ ව මින් කුමන වගන්තිය / වගන්ති සකස වේ ද?

$\text{CH}_2 = \text{CH}(\text{CH}_2)_3 - \text{C}(=\text{O}) - \text{NH}_2$

- ලොමින් දියර විවරණ කරයි.
- ඡලිය NaOH දුව්‍යානයක් සමග උණුසුම් කළ විට ඇමෙරිනියා නිදහස් කරයි.
- 2,4-DNP ප්‍රතිකාරකය සමග තැංකිලි පැහැති අවක්ෂේපයක් ලබා දේ.
- NaBH_4 සමග පිරියම් කළ විට ප්‍රාප්තික ඇමීනයක් ලබා දේ.

40. පහත දී ඇති සංයෝග සලකන්න.

(A) HCHO (B) NH_2CONH_2 (C) $\text{C}_6\text{H}_5\text{OH}$
(D) $\text{HO}_2\text{C}(\text{CH}_2)_4\text{CO}_2\text{H}$ (E) $\text{H}_2\text{N}(\text{CH}_2)_6\text{NH}_2$

අදාළ තත්ත්වයන් යටතේ ප්‍රතික්‍රියා කළ විට පහත දී ඇති කුමන පුගලය / යුගලයන් තාපස්ථාපන බහුජාවයකයක් ලබා දේ ද?

- (a) A සහ B (b) A සහ C (c) C සහ D (d) D සහ E

● අංක 41 සිට 50 තෙක් එක් එක් ප්‍රෝග්‍රාම සඳහා ප්‍රකාශ දෙක බැඟින් ඉදිරිපත් කර ඇත. එම ප්‍රකාශ යුගලයට තොදුත් ම ගැලපෙනුයේ පහත විදුලෙහි දැක්වෙන පරිදි (1), (2), (3), (4) සහ (5) යන ප්‍රතිචාරවලින් කළර ප්‍රතිචාරය දැක්වීමෙන් නොවේ. උත්තර පත්‍රයෙහි උච්චිත ලෙස ලකුණු කරන්න.

ප්‍රතිචාරය	උච්චිත ප්‍රකාශය	දෙවානි ප්‍රකාශය
(1)	සත්‍ය වේ.	සත්‍ය වන අතර, පළමුවැනි ප්‍රකාශය නිවැරදි ව පහත දෙයි.
(2)	සත්‍ය වේ.	සත්‍ය වන නමුත් පළමුවැනි ප්‍රකාශය නිවැරදි ව පහත නොදුනී.
(3)	සත්‍ය වේ.	අසත්‍ය වේ.
(4)	අසත්‍ය වේ.	සත්‍ය වේ.
(5)	අසත්‍ය වේ.	අසත්‍ය වේ.

	උච්චිත ප්‍රකාශය	දෙවානි ප්‍රකාශය
41.	සුක්රෝස්, සාන්ද H_2SO_4 සමඟ පිරියම් කළ විට කළ පැහැති ස්කන්ධයක් ලැබේ.	සාන්ද H_2SO_4 ප්‍රබල ස්කිකිකාරකයකි.
42.	$CH_3CH=CH_2$ සහ HX අතර ආකලන ප්‍රතික්‍රියාවේදී $CH_3CH_2CH_2^+$ කාබොකුටායනය අතරමැදියක් ලෙස පහසුවෙන් යැදේ.	ඒන ආරෝපිත කාබන් පරමාණුවකට සම්බන්ධ ඇල්කයිල් කාබන් මගින් $C-C$, ර-බන්ධන හරහා ඒන ආරෝපිත කාබන් වෙත ඉලෙක්ට්‍රෝන නිදහස් කර කාබොකුටායනයේ ස්පායිනාව වැඩි කරයි.
43.	80 °C දී $H_2(g)$ හි මධ්‍යනාය අණුක වෙශය, 40 °C දී $N_2(g)$ හි මධ්‍යනාය අණුක වෙශයට වඩා අඩු වේ.	මධ්‍යනාය අණුක වෙශය උෂේණත්වයෙහි වර්ග මූලයට අනුලෝචන සමානුපාතික වන අතර මොලික ස්කන්ධයෙහි වර්ග මූලයට ප්‍රතිලෝචන සමානුපාතික වේ.
44.	කාන්ඩයේ පහළට යන විට ජලය සමඟ ක්ෂාර ලෝහවල ප්‍රතික්‍රියනාව වැඩි වේ.	ලෝහ පරමාණුවේ විශාලත්වය වැඩි වන විට ප්‍රබල ලෝහක බන්ධන යැදේ.
45.	$CH_3C\equiv CH$ ඇමෝනිකාත Cu_2Cl_2 සමඟ පිරියම් කළ විට රතු අවක්ෂේපයක් ලබා ඇදේ.	ඇල්කයිනවල අශ්‍රේපවල ඇති ආම්ලික හයිඩ්‍රිජන් ලෝහ මගින් විස්තාපනය කළ හැක.
46.	සියලු ම ස්වයංකිරිද ප්‍රතික්‍රියා තාපදායක වේ.	මිනැම ප්‍රතික්‍රියාවකට $\Delta G = \Delta H + T\Delta S$ වේ.
47.	$NH_3(g)$ නිෂ්පාදනයේදී $N_2(g)$ හා $H_2(g)$ අතර ප්‍රතික්‍රියාව තාපාවයෙන්පෙනු වේ.	නයිට්‍රික් අම්ලය හා දුරියා සංශ්ලේෂණයේදී $NH_3(g)$ හාවිත වේ.
48.	ලෝමොක්ලෝරෝමින්ස්හි ද්ර්පණ ප්‍රතිඵ්‍යුම්, ප්‍රතිරූපඩවය සමාවයටික වේ.	ඒකිනෙක මත සම්පාත කළ නොහැකි ද්ර්පණ ප්‍රතිඵ්‍යුම් ප්‍රතිරූපඩවය සමාවයටික වේ.
49.	ආම්ලික ජලීය මාධ්‍යයක දී බෙරියම් ඔක්සල්ට්‍රිට්, $BaC_2O_4(s)$ හි දාවිතනාව, ජලයේදී එහි දාවිතනාවට වඩා අඩු වේ.	$C_2O_4^{2-}$ වල සංයුෂ්මක අම්ලය වන්නේ $H_2C_2O_4$ යුතුවල අම්ලයයි.
50.	සමහර ගාකවල මූල ගැටිතිවල පවතින එන්සයිමවලට N_2 තිර කිරීමේ හැකියාවක් ඇත.	N_2 අණුව අක්‍රිය වන්නේ මූලික වශයෙන් එහි අඩංගු $N-N$ ත්‍රිත්ව බන්ධනය තේතුවෙනි.

* * *

ආචර්යික වගුව

		1	H														2	He	
1		3	4																
2		Li	Be																
3		11	12																
4		Na	Mg																
5		19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
6		K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
7		Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
8		55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
9		Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
10		87	88	Ac-	104	105	106	107	108	109	110	111	112	113	...				
11		Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71				
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu				
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103				
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr				

ரසாயன விஜில் II
இரசாயனவியல் II
Chemistry II

02 S II

ஏடு ஏந்தி
மூன்று மணித்தியாலம்
Three hours

විගාහ අංකය :

- * ආවර්තිනා වගුවක් 15 වැනි පිටුවෙහි සපයා ඇත.
- * ගණක යත්තු භාවිතයට ඉඩ දෙනු කොමුදේ.
- * සාරවතු වායු තියතය, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$
- * ඇවශාකියේ තියතය, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$
- * මෙම ප්‍රශ්න පෙනුයට පිළිනරු යැපයිමේ දී ඇල්කයිල් කාල්ඩ් සංක්මිල්ත ආකාරයකින් නිර්පෙනුය කළ ලදී ය.

□ A කොටස - ව්‍යුහගත රෙඛන (පිටු 2 - 8)

- * සියලු ම ප්‍රයෝගවලට මෙම ප්‍රයෝග පහුණුයේ ම පිළිතුරු සපයන්න.
- * ඔබේ පිළිතුරු එක් එක් ප්‍රයෝගයට ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ ප්‍රමාණය පිළිතුරු ලිවිමට ප්‍රමාණවන් බව ද දිරිය පිළිතුරු බලාපොරොත්තු නො වන බව ද සලකන්න.

□ B කොටස සහ C කොටස - රටනා (පිට 9 - 14)

- * එක් එක් කොටසින් ප්‍රශ්න දේශ බැගින් තෝරා ගතිමින් ප්‍රශ්න සහරකට පිළිතුරු සපයන්න. මේ සඳහා සපයනු ලබන කඩුයි හාවත කරන්න.
- * සම්පූර්ණ ප්‍රශ්න පත්‍රයට නියමිත කාලය අවසන් වූ පසු A, B සහ C කොටස්වලට පිළිතුරු. A කොටස මුදින් තිබෙන පරිදි එක් පිළිතුරු පත්‍රයක් වන සේ අමුණා විභාග ගාලාධිපතිට හාර දෙන්න.
- * ප්‍රශ්න පත්‍රයහි B සහ C කොටස් පමණක් විභාග ගාලාවෙන් පිළිත ගෙන යා නැති ය.

ପରିବହନପରିଯେତ୍ରେ କାମାରୁକୁ କାହୁଁ ପାଇବି

කොටස	ප්‍රාග්‍රහ අංකය	භාෂිත ලක්ෂණ
A	1	
	2	
	3	
	4	
B	5	
	6	
	7	
C	8	
	9	
	10	
එකතුව		
ප්‍රතිගෙය		

ඉලක්කමෙන්	
අකුරින්	

සිංහල් දැනු

ලුත්තර පතු පරික්ෂක 1	
ලුත්තර පතු පරික්ෂක 2	
පරික්ෂා කළේ :	
අධික්ෂණය කළේ :	

A කොටස - ව්‍යුහගත රට්තා

ප්‍රශ්න ගතරට ම මෙම පත්‍රයේ ම පිළිබුරු සපයන්න. (එක් එක් ප්‍රශ්නය සඳහා නියමිත ලකුණු ප්‍රමාණය 10 ක්.)

1. (a) ඔබට ආවර්තිතා වගුවේ p -ගොනුවේ මූල්‍යවා කිහිපයක් අඩංගු ලැයිස්තුවක් පහත සපයා ඇත.

B	C	N	O	F	Ne
Al	Si	P	S	Cl	Ar

එම ලැයිස්තුවෙන්,

(i) ඉහළ දැක් බවතින් යුතු සම්පර්මාණුන සහයෝගී දැලිසක් සාදන අගෝන්මය මූල්‍යවාය හඳුනාගන්න.

(ii) විඩාන් ම පුළුල් ඔක්සිකරණ අවස්ථා පරාසයක් පෙන්වුම් කරන මූල්‍යවාය හඳුනාගන්න.

(iii) වැඩි ම පලම් අයනිකරණ ගක්තිය ඇති මූල්‍යවාය හඳුනාගන්න.

(iv) උග්‍යගුණී ලක්ෂණ පෙන්වුම් කරන මූල්‍යවාය හඳුනාගන්න.

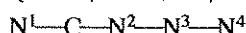
(v) වායුමය බහුරුපී ආකාර දෙකක් ඇති මූල්‍යවාය හඳුනාගන්න.

(vi) ප්‍රහාල ම ඔක්සිකාරකය ලෙස සැලකෙන මූල්‍යවාය හඳුනාගන්න.

(ලකුණු 2.4 පි.)

(b) පහත දී ඇති (i) සිට (v) කොටස් CN_4 අණුව මත පදනම් වේ. එහි සැකිල්ල පහත දී ඇත.

(i) $\text{N}—\text{N}$ බන්ධන දිග ආසන්න වශයෙන් සමාන බව උපකල්පනය කරමින්, මෙම අණුව සඳහා වඩාන් ම පිළිගත හැකි ලුවිස් ව්‍යුහය අදින්න.


(ii) මෙම අණුව සඳහා සම්පූර්ණ ව්‍යුහ තුළක් අදින්න (ඉහත (i) කොටසෙහි අදින ලද ව්‍යුහය හැර).

(iii) ඉහත (i) නි අදින ලද ලුවිස් ව්‍යුහය පදනම් කර ගෙන, පහත වගුවේ දක්වා ඇති C සහ N පර්මාණුවල,

I. පර්මාණුව වටා VSEPR යුගල්	II. පර්මාණුව වටා ඉලෙක්ට්‍රොන යුගල් ජ්‍යාමිතිය
III. පර්මාණුව වටා හැඩය	IV. පර්මාණුවේ මූහුමිකරණය

සඳහන් කරන්න.

CN_4 හි නයිට්‍රෝන් පර්මාණු පහත දක්වා ඇති ලෙස අංකනය කර ඇත:

	C	N^2	N^3
I. VSEPR යුගල්			
II. ඉලෙක්ට්‍රොන යුගල් ජ්‍යාමිතිය			
III. හැඩය			
IV. මූහුමිකරණය			

(iv) ඉහත (i) කොටසහි අදින ලද ප්‍රවිස් ව්‍යුහයෙහි වයි විද්‍යුත් සාර්ථකාවයක් ඇත්තේ N^2 හෝ N^3 ට දැයි සඳහන් කරන්න. ඔබ තෝරා ගැනීමට හේතු දක්වන්න. [පරමාණුවල අංකන (iii) කොටසහි ආකාරයට වේ.]

.....

.....

.....

.....

(v) ඉහත (i) කොටසහි අදින ලද ප්‍රවිස් ව්‍යුහයෙහි පහත සඳහන් රෙඛන්දහන සැදිමට සහභාගි වන පරමාණුකා මුහුම් කාක්ෂික හඳුනාගන්න. [පරමාණුවල අංකන (iii) කොටසහි ආකාරයට වේ.]

I. N^1-C N^1, C.....

II. $C-N^2$ C....., N^2

III. N^2-N^3 N^2, N^3

IV. N^3-N^4 N^3, N^4

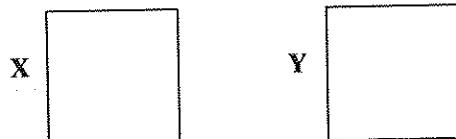
(ලකුණු 5.6 අ)

(c) පහත දැක්වෙන ප්‍රකාශ සහිත ද නැගමෙන් අයිතිය ද යන බව සඳහන් කරන්න. (හේතු අවශ්‍ය තොට්වේ.)

(i) SF_6 සහ OF_6 යන දෙක ම ස්පෑයි අණු වේ.

(ii) $SiCl_4$, NCl_3 සහ $SiCl_2$ හි ඉලෙක්ට්‍රෝන පුළුල් ජ්‍යාමිතිය වතුස්ත්‍රීය ව්‍යවද ඒවායේ බන්ධන කෝරේන් වෙනස් ය.

(iii) Kr හි තාපාංකය Xe හි තාපාංකයට වඩා වැඩි ය.


(iv) II වන කාණ්ඩයේ සල්ංච්වල දාව්‍යකාව කාණ්ඩයේ පහළට යන විට අඩු වන්නේ මුළුක වශයෙන් කුටායනවල ජ්‍යාමිතිය අඩුවන තිසා ය.

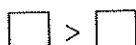
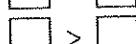
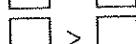
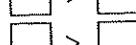
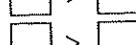
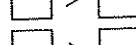
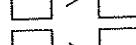
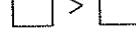
(ලකුණු 2.0 අ)

100

2. (a) X සහ Y ආවර්තිතා වගුවේ R-ගොනුවේ මූල්‍යවන වේ. ඒවා ජලය සමග ප්‍රතික්‍රියා කර හයිඩ්‍රොක්සයිඩ් සාදයි. Y හි හයිඩ්‍රොක්සයිඩ් වඩා X හි හයිඩ්‍රොක්සයිඩ් හාජ්මික වේ. X හි හයිඩ්‍රොක්සයිඩ් ලදුවන්ගේ සබන් නිෂ්පාදනයේ දී භාවිත කරයි. Y හි හයිඩ්‍රොක්සයිඩ් ගෝලිය උණුස්සුම්කරණය සඳහා ප්‍රධාන ලෙස හේතුවන වායුලින් එකක් වන Z වායුව හඳුනාගැනීමට සාමාන්‍යයෙන් භාවිත කරයි.

(i) X සහ Y හඳුනාගන්න.

(ii) X සහ Y හි ඉලෙක්ට්‍රෝන වින්‍යාස ලියන්න.









X =

Y =

(iii) පහන්සිඩ පරික්ෂාවේ දී X සහ Y හි ලවණ පෙන්වුම් කරන දැල්ලේ වර්ණ ලියන්න.

X = Y =

(iv) X සහ Y හි පහත දී සඳහා සාපේක්ෂ විගාලත්වයන් දක්වන්න.

I. පරමාණුලේ විගාලත්වය >
 II. සනත්වය >
 III. ද්‍රව්‍යාංකය >
 IV. පළමු අයනීකරණ ගක්තිය >

(v) Z හඳුනාගන්න.

.....

(vi) Z හඳුනාගැනීම සඳහා Y හි හයිඩ්බූක්සයයිය හාවිත කළ හැක්කේ කෙසේ දැයි තුළින රසායනික සමිකරණ පමණක් හාවිතයෙන් දක්වන්න.

යැයු : අවක්ෂේප ඇතොත් “↓” ලෙස සහ හඳුනාගැනීමේ දී උපයෝගී වන අවක්ෂේපවල / දාවණවල වරණ දක්වන්න.

.....

.....

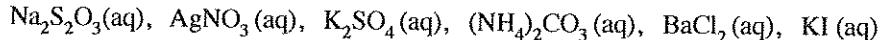
(vii) කාබනේටයක් වියයෙන් පවතින Y හි ස්වාභාවික ප්‍රහවයක්, විෂේෂ නායකයක් නිශ්චාදනයේ දී අමුදුව්‍යයක් ලෙස හාවිත කෙරේ.

I. ස්වාභාවික ප්‍රහවය නම් කරන්න.

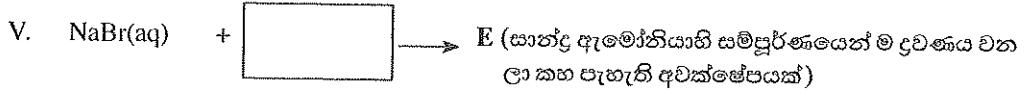
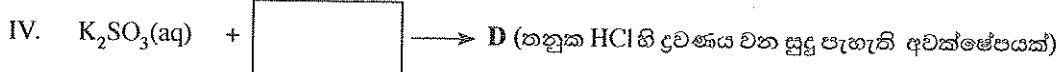
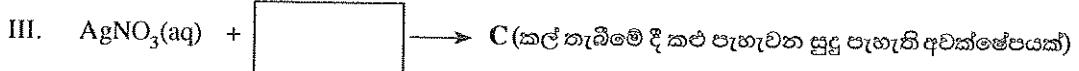
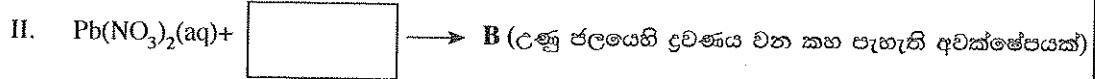
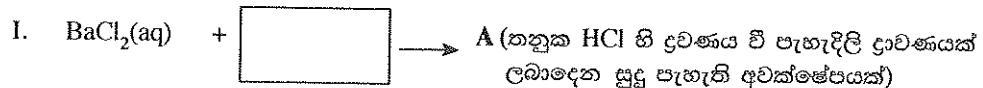
II. විෂේෂ නායකය හඳුනාගන්න.

III. විෂේෂ නායකය නිශ්චාදන ක්‍රියාවලියේ පියවර තුළින රසායනික සමිකරණ පමණක් හාවිතයෙන් ලියන්න.

.....


.....

.....






(ලකුණ 5.0 පි)

(b) (i) දී ඇති ලයිඩ්බූවන් සුදුසු දාවණය තෝරා ගෙන කොටුව තුළ ලිවීමෙන්, පහත දී ඇති ප්‍රතික්‍රියා සම්පූර්ණ කරන්න.

දාවණ ලයිඩ්බූව (පිළිවෙළින් නොවේ)

යැයු : එක් දාවණයක් එක් වරක් පමණක් හාවිත කළ යුතු ය.

(ii) A සිට F දක්වා ඇති අවක්ෂේපවල රසායනික සුදු ලියන්න.

A B

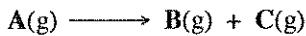
C D

E F

(iii) ඉහත (b) (i) හි දක්වන A, D හා E අවක්ෂේප ද්‍රවණය වීම සඳහා තුළින රසායනික සමිකරණ ලියන්න.

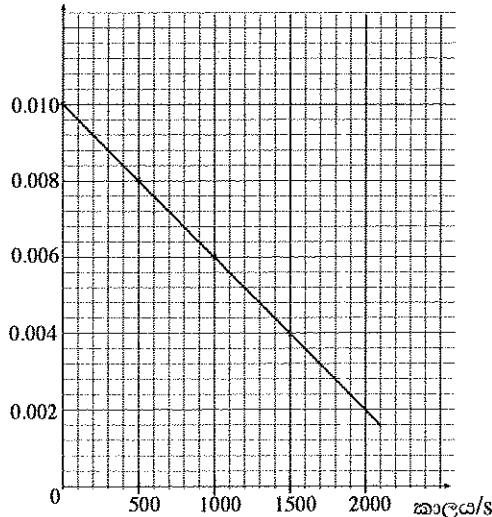
.....

.....


සේවක සියලු ස්වාභාවික ප්‍රහවයක් හාවිත කළ යුතු ප්‍රහවයක්

(ලකුණ 5.0 පි)

[රැකිවීම් පුද්‍ර බලත්තා]


100

3. (a) 227°C සිදු A වායුවෙන් මුළු 0.010 ක් රේවනය කරන ලද 1.0 dm^3 සංඝාත දැඩ් හාර්තයක් තුළ සහ උත්ප්‍රේරකයක ස්වල්ප ප්‍රමාණයක් හමුවේ තැබූ විට, එය පහත දැක්වෙන ආකාරයට වියෝග්‍රය වේ.

A(g) හි සාන්දුනය කාලයක් සමග මතින ලද ප්‍රතිඵල පහත දැක්වෙන ප්‍රස්ථාරයේ පෙන්වා ඇත.

$$[\text{A}] / \text{mol dm}^{-3}$$

(i) ප්‍රතිත්වාවේ පෙළ සහ සිපුතා නියතය පිළිවෙළින් a සහ k ලෙස ගනීමින් ඉහත ප්‍රතිත්වාව සඳහා සිපුතා ප්‍රකාශනය ලියන්න.

(ii) ජේතු දක්වමින් a හි අගය නීර්ණය කරන්න.

.....

.....

.....

(iii) 227°C සිදු සිපුතා නියතය, k ගණනය කරන්න.

.....

.....

.....

.....

.....

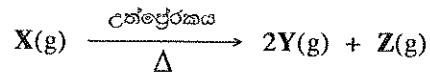
(iv) ආරම්භයේදී පැවති A(g) හි ප්‍රමාණයෙන් අඩික් වියෝග්‍රය වී ඇති විට හාර්තය තුළ පිඩිනය ගණනය කරන්න. උත්ප්‍රේරකයෙහි පරිමාව තොයලුකා හැරිය හැකි බව උපකළුපනය කරන්න.

.....

.....

.....

.....


.....

.....

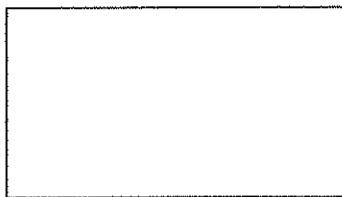
.....

(කෙතු 6.0 පි)

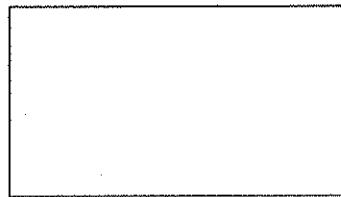
(b) සන උත්ප්පේරකයක් හමුවේ X වායුව පහත දැක්වෙන රසායනික සම්කරණය අනුව වියෝගීනය වේ.

೨೭೭
ಕ್ರಿಸ್ತ
ಕ್ರಿಸ್ತ
ಕ್ರಿಸ್ತ
ಕ್ರಿಸ್ತ

රේවනය කරන ලද හාර්තයක් තුළම X වායුවෙන් මුළු 1.0 ක් ඇතුළත් කරන ලදී. වායුවෙහි ආරම්භක පරිමාව V_0 ලෙස මැනේ ඇත. උත්ප්ලේරකයෙන් කුඩා ප්‍රමාණයක් (පරිමාව තොසලකා ගැරිය හැක) ඇතුළත් කිරීමෙන් ප්‍රතික්‍රියාව ආරම්භ කරන ලදී. උත්ප්ලේරනය කරන ලද ප්‍රතික්‍රියාවේ සිසුතා නියතය k_1 සහ X ට සාපේන්ස්ව ප්‍රතික්‍රියාවේ පෙළ b වේ. ප්‍රතික්‍රියාවේ ආරම්භක සිසුතාවය R_0 ලෙස මැනේ ඇත. හාර්තය ප්‍රසාරණය වීමට ඉඩ හැරීමෙන් පද්ධතියේ පිධිනය නියත අගයක පවත්වා ගන්නා ලදී. පද්ධතියේ උණ්ණත්වය ද නියත අගයක පවත්වා ගන්නා ලදී.

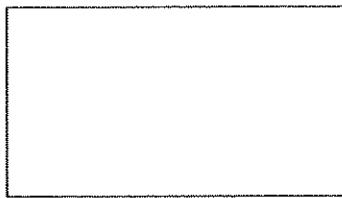

(i) b, k_1 සහ V_0 පාද අනුසාරයෙන් R_0 සඳහා ප්‍රකාශනයක් ලියන්න.

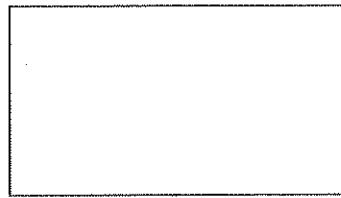
(ii) X(g) හි 50 % ක ප්‍රමාණයක් විය වූ විට ප්‍රතික්‍රියාව සිදු වන හාර්ජනයේ පරිමාව දෙගුණ වූ බව සහ ප්‍රතික්‍රියාවේ දිගුතාවය $0.25R_0$ වූ බව නිරීක්ෂණය කරන ලදී. ප්‍රතික්‍රියාවේ පෙළ b ගණනය කරන්න.

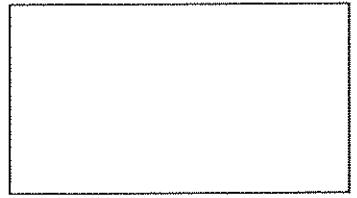

(කොන් 4.0 එ)

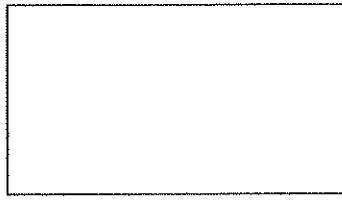
100

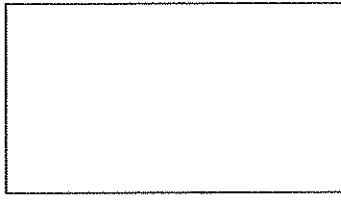
4. (a) (i) A, B, C සහ D යනු අණුක පුතුය $C_4H_{10}O$ වූ ව්‍යුහ සමාච්‍යවික වේ. සමාච්‍යවික නතර ම ලෝහමය සෙයේයම් හා ප්‍රතික්‍රියා කර H_2 වායුව් මුත්ත කරයි. සමාච්‍යවික සතරින් A පමණක් ප්‍රකාශ සමාච්‍යවිකතාව දක්වයි. B, C සහ D, $ZnCl_2$ අධිගු සාන්ද HCl වලට වෙන වෙන ම එකතු කළ විට, B අධිගු මිශ්‍රණයකි ඉතා ඉක්මනින් ආවිල්‍යාවක් ඇති විය. C සහ D හි ආවිල්‍යාව ඇති විම ඉතා සෙමින් යිදු විය. C සහ D සාන්ද H_2SO_4 සමග රත් කළ විට E සහ F පිළිවෙළින් ලබා දුනි. E සහ F අණුක පුතුය C_4H_8 වූ ව්‍යුහ සමාච්‍යවික වේ. E සහ F සංයෝග දෙකක් එකත්වන් ජාලමිනික සමාච්‍යවිකතාව නොපෙන්වයි. E සහ F, HBr සමග පිරියම් කළ විට G සහ H පිළිවෙළින් ලබා දුනි. G පමණක් ප්‍රකාශ සමාච්‍යවිකතාව පෙන්වයි. A, B, C, D, E, F, G සහ H හි ව්‍යුහ පහත දී ඇති කොටුවල අදින්න. (ත්‍රිමාන සමාච්‍යවික ආකාර ඇද දක්වීම් අවශ්‍ය යුතු.)


A

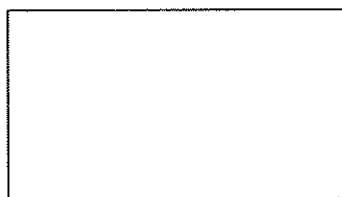

B

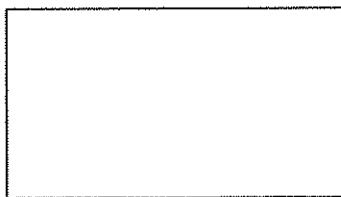

C


D


E

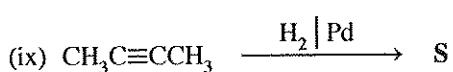
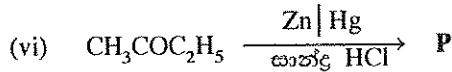
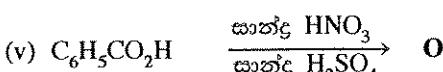
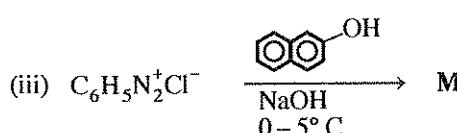
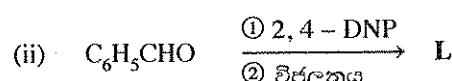
F

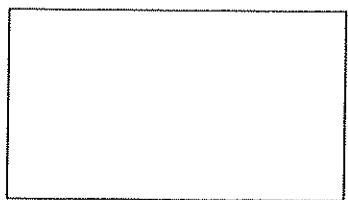

G


H

(කොණු 4.0 අ)

(ii) A සහ C, PCC සමග ප්‍රතික්‍රියා කරනු විට I සහ J පිළිවෙළින් ලබා දුනි. I සහ J වල ව්‍යුහ පහත දී ඇති කොටුවල අදින්න. (PCC = පිරිචිනියම් ක්ලෝරෝනොය්ඩම්ටිටි)

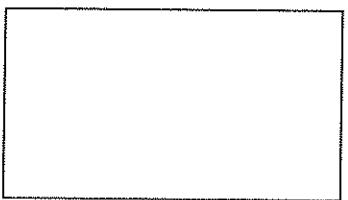





I

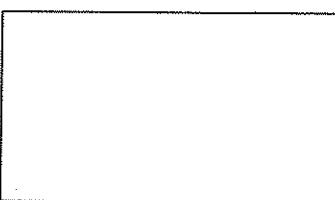


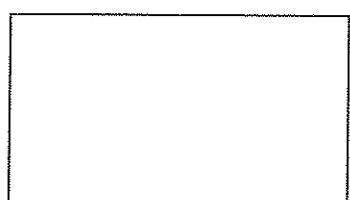
J

(කොණු 1.0 අ)

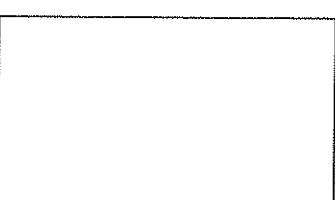
(b) පහත දී ඇති ප්‍රතික්‍රියාවල ප්‍රධාන කාබනික එල වන **K, L, M, N, O, P, Q, R, S** සහ **T** හි ව්‍යුහ 8 වන පිටුවෙහි දී ඇති අදාළ කොටුවල අදින්න.

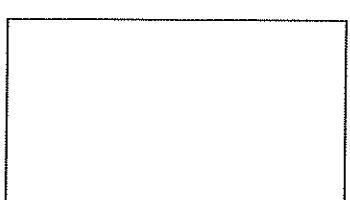

K

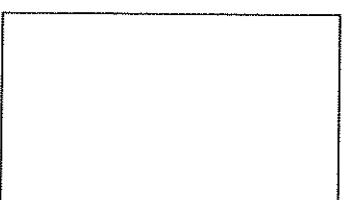

L


M

N


O


P


Q

R

S

T

සේව
මිශ්ච
මියෙන
භා පියන්

(ලක්ෂණ 3.0 ඩි)

(c) $\text{C}_2\text{H}_5\text{CH}=\text{CHC}_2\text{H}_5$ සහ $\text{Br}_2(\text{CCl}_4)$ අතර ප්‍රතික්‍රියාව සඳහා යන්ත්‍රණය ලියන්න.

* *

(ලක්ෂණ 2.0 ඩි)

100

6. (a) 25°C තී පරිමාමික ජ්ලාස්කුවක් තුළ සංගුද්ධ දුබල අම්ලයකින් පුදුපු ප්‍රමාණයක් 25.00 cm^3 දක්වා ආපුරුත් ජලයෙන් තනුක කිරීමෙන් HA දුබල අම්ලයෙහි 0.10 mol dm^{-3} දාවනයක් සාදා ගන්නා ලදී. මෙම දාවනයේ pH අගය 3.0 ක් විය.

(i) $\text{HA(aq)} + \text{H}_2\text{O(l)} \rightleftharpoons \text{H}_3\text{O}^+(\text{aq}) + \text{A}^-(\text{aq})$ යන සම්කරණය සලකමින් දුබල අම්ලයේ විකුත් නියතය, K_a ගණනය කරන්න.

(ii) මෙම HA දුබල අම්ලයෙහි තනුක දාවනයක්, BOH ප්‍රහැ හස්මයක් සමග අනුමාපනය කරන ලදී. සමකාලීකාලීය ලියා තුළ පසු අනුමාපන මිශ්‍රණයේ pH අගය 9.0 බව සොයා ගන්නා ලදී. අනුමාපන මිශ්‍රණයේ ඇති AB දාවනයෙහි සාන්දුණය ගණනය කරන්න. (25°C තී $K_w = 1.0 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$)

(iii) ඉහත අනුමාපන මිශ්‍රණය ආපුරුත් ජලය එක් කිරීමෙන් සියවරක් තනුක කරන ලදී. තනුක කරන ලද අනුමාපන මිශ්‍රණයෙහි pH අගය ගණනය කරන්න. (ලකුණු 5.0 පි)

(b) AgBr(s) ජලයේ අඋළේ වශයෙන් දාවන ලා කහ පැහැති ලිවනයකි. 25°C තී දී එහි දාවනතා ගුණිතය, K_{sp} $5.0 \times 10^{-13} \text{ mol}^2 \text{ dm}^{-6}$ වේ.

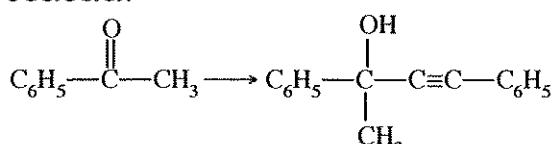
(i) 25°C තී දී සන AgBr සමග සමතුලිතව පවතින සන්තාප්ත ආපුරුත් $\text{Ag}^+(\text{aq})$ සාන්දුණය ගණනය කරන්න.

(ii) ඉහත (i) තොටසෙහි විස්තර කර ඇති දාවනයෙන් 100.0 cm^3 , සන AgBr සමග බිකරයකා අඩිංගු වේ. මෙම බිකරයට ආපුරුත් ජලය 100.0 cm^3 ක් එකතු කර සමතුලිතතාවට එළඹීන තුරු මිශ්‍රණය හොඳින් කළතන ලදී. මෙම අවස්ථාවේ සන AgBr යම් ප්‍රමාණයක් බිකරයේ පත්‍රලේ තවදුරටත් ඉතිරි ව පැවතුණි. මෙම දාවනයෙහි $\text{Ag}^+(\text{aq})$ සාන්දුණය කුමක් විය හැකි ද? මෙටි පිළිතුර පහදන්න.

(iii) පුදුපු ගණනය කිරීමක් හාවිතයෙන් 25°C තී දී $1.5 \times 10^{-4} \text{ mol dm}^{-3} \text{ AgNO}_3$ දාවනයකින් 10.0 cm^3 සහ $6.0 \times 10^{-4} \text{ mol dm}^{-3} \text{ NaBr}$ දාවනයකින් 5.0 cm^3 මිශ්‍ර කළ විට බලාපොරොත්තු වන නිරික්ෂණය පුරෝක්තිය කරන්න. (ලකුණු 5.0 පි)

(c) (i) පරිපූර්ණ ද්විතාංගී දාවනයක් සමග සමතුලිතව ඇති වාෂ්ප කළාපයෙහි පිඩිතය P වේ. සංසටහා දෙකෙහි ද්විතාංගී මුළු හාග X_1 හා X_2 වන අතර එවායේ සන්තාප්ත වාෂ්ප පිඩිත පිළිවෙළින් P_1^0 සහ P_2^0 වේ.

$$X_1 = \frac{P - P_2^0}{P_1^0 - P_2^0} \text{ බව පෙන්වන්න.}$$

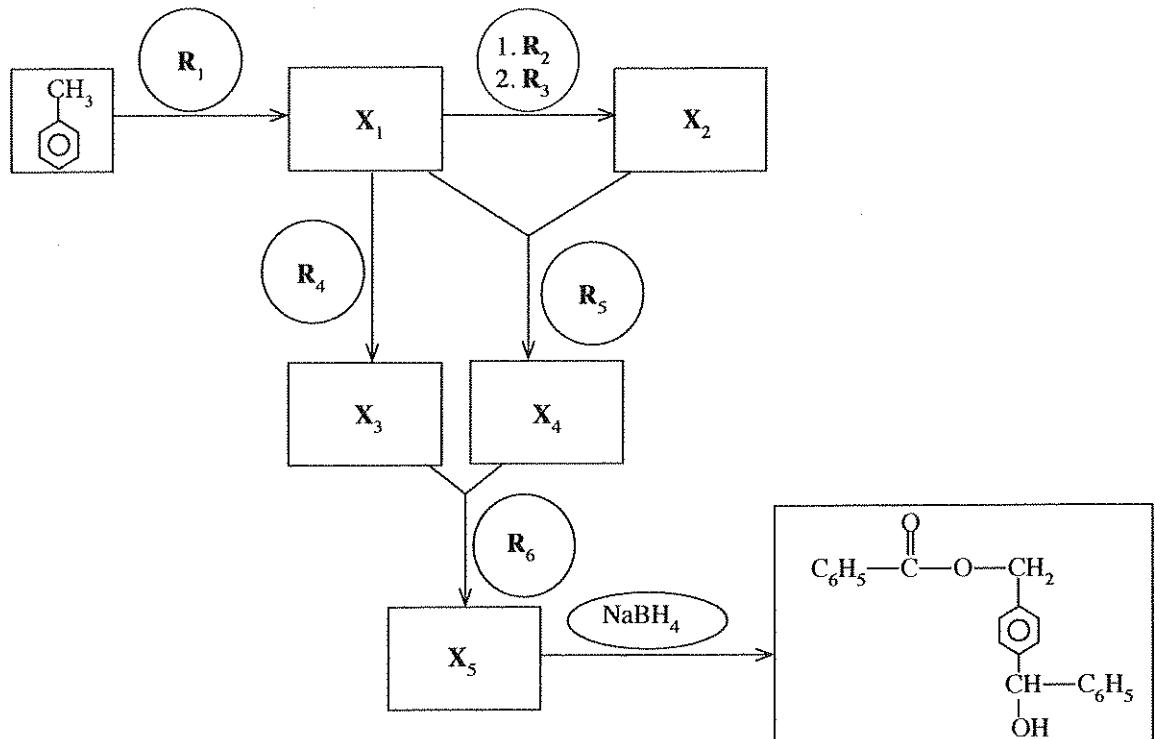

(ii) 50°C තී දී මෙතනෝල් සහ එතනෝල් අඩිංගු ද්විතාංගී දාවනයක් සමග සමතුලිතව ඇති වාෂ්ප කළාපයෙහි පිඩිතය $4.5 \times 10^4 \text{ Pa}$ වේ. මෙම උෂ්ණත්වයේ දී මෙතනෝල් සහ එතනෝල් හි සන්තාප්ත වාෂ්ප පිඩිත පිළිවෙළින් $5.5 \times 10^4 \text{ Pa}$ සහ $3.0 \times 10^4 \text{ Pa}$ වේ. දාවන පරිපූර්ණ ලෙස හැසිරෙන බව සලකන්න.

I. ද්විතාංගී මුළු හාග ගණනය කරන්න.

II. වාෂ්ප කළාපයෙහි මෙතනෝල් සහ එතනෝල් හි මුළු හාග ගණනය කරන්න.

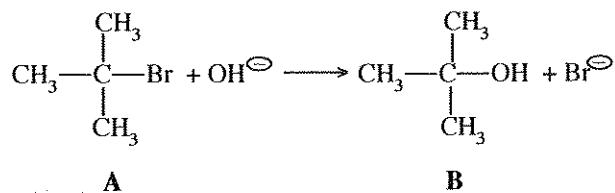
(iii) ඉහත ගණනය කිරීම් සහ දී ඇති තොරතුරු පදනම් කර ගනිමින් 50°C තී දී මෙතනෝල්-එතනෝල් මිශ්‍රණයෙහි වාෂ්ප පිඩිත-සංයුති සටහන ඇද දක්වන්න. දාවන පරිපූර්ණ ලෙස හැසිරෙන බව සලකන්න. (ලකුණු 5.0 පි)

7. (a) ලැයිස්තුවේ දී ඇති රසායන ද්විතාංගී ප්‍රමාණක් හාවිත කර, ඔහු පහත සඳහන් පරිවර්තනය සිදු කරන්නේ කොසේදැයි පෙන්වන්න.


රසායන ද්විතාංගී පියවර

H_2O , මධ්‍යසාරිය KOH , Br_2 , සාන්දු H_2SO_4 , NaBH_4 , $\text{C}_2\text{H}_5\text{MgBr}$ /වියලු රතර

බඳෙන පරිවර්තනය පියවර 9 කට වැඩි තොවිය යුතු ය.


(ලකුණු 6.0 පි)

(b) පහත සඳහන් ප්‍රතික්‍රියා දාමය සම්පූර්ණ කිරීම සඳහා $R_1 - R_6$ සහ $X_1 - X_5$ හැඳුනාගන්න.

(కොන් 7.0 ඩී)

(c) (i) පහත සඳහන් ප්‍රතිඵ්‍යාච සඳහා යන්ත්‍රණය දෙන්න.

(ii) NaOH සමඟ A හි ප්‍රතික්‍රියාවෙන් B එ අමතරව, C නමුත් වෙනත් එළයක් ලැබේ. C හි ව්‍යුහය දෙන්න.

(క్రమ 2.0 3)

C. තොටෝ - රචනා

ප්‍රශ්න දෙකකට පමණක් පිළිතරු සපයන්න. (එක් එක් ප්‍රශ්නයට ලක්මා 15 බැඳින් ලැබේ.)

8. (a) A සංයෝගය ($A = MX_n$, $M = 3d$ ගොනුවට අයන් ආන්තරික මූල්‍යව්‍යයක්, $X =$ එකම වර්ගයකට අයන් ලිගන) වැඩිපුර තනුක $NaOH$ සහ ඉන්පසු H_2O_2 සමඟ පිරියම් කළ විට B සංයෝගය ලබා දේ. B හි ජලිය දාවණයක් තනුක H_2SO_4 මින් ආම්ලිකත කළ විට C සංයෝගය ලබා දේ. C සංයෝගය NH_4Cl සමඟ ප්‍රතික්‍රියා කළ විට එක එලයක් ලෙස D සංයෝගය ලබා දේ. D සහය රත් කළ විට නිල්පැහැලි E සංයෝගය, ජලවාණ්ඩ සහ නිෂ්ප්‍රිය ද්‍රව්‍යරාමාණුක F වායුව ලබා දේ. Ca ලේඛය F වායුවේ දහනය කළ විට සුදු G සහය ලබා දේ. ජලය සමඟ G හි ප්‍රතික්‍රියාවෙන් H වායුව නිඛෙක් කරයි. මෙම වායුව HCl වායුව සමඟ සුදු දුමාරුයක් පාදයි. දුටු H සමඟ Na ලේඛය ප්‍රතික්‍රියා කර එක එලයක් ලෙස අවක්ෂ ද්‍රව්‍යරාමාණුක I වායුව ලබා දේ. A හි ජලිය දාවණයක් වැඩිපුර Na_2CO_3 සමඟ පිරියම් කළ විට වර්ණවත් අවක්ෂේපයක් ඇති දේ. මෙම අවක්ෂේපය පෙරා, පෙරනය තනුක HNO_3 වින් ආම්ලිකත කරනු ලැබේ. මෙම දාවණයට $AgNO_3(aq)$ එකතු කළ විට තනුක NH_4OH වල දාව්‍ය වන සුදු අවක්ෂේපයක් ලබා දේ.

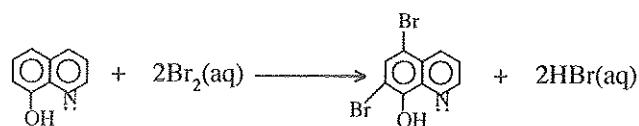
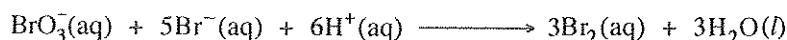
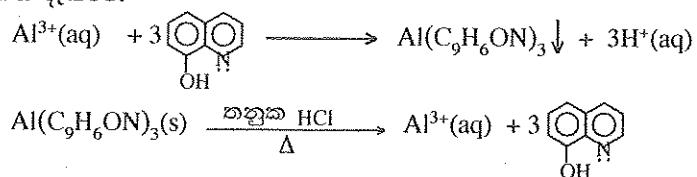
(i) A, B, C, D, E, F, G, H සහ I හඳුනාගන්න.

(ii) C අධිංශු දුවනුයක් තනුක NaOH වලින් පිරියම් කළ විට ඔබ කුමක් නිරික්ෂණය කළ හැකි වේ ද? මෙම නිරික්ෂණයට අදාළ තුළින රයායනික සම්කරණය දෙන්න. (ලකුණු 5.0 පි)

(b) T නම් ජලිය දාවණයක ලෝහ අයන තුළක් අඩංගු වේ. මෙම ලෝහ අයන හඳුනාගැනීම සඳහා පහත සඳහන් පරික්ෂණ සිදු කරන ලදී.

පරීක්ෂණය	නිරීක්ෂණය
1. තනුක HCl මිශ්‍රිත T ආම්ලිකාත කර, ලැබුණු පැහැදිලි ආච්‍යාතය තුළින් H_2S මුළුලනය කරන ලදී.	Q_1 කළ පැහැති අවක්ෂේපයක් සඳුනී.
2. Q_1 පෙර ඉවත් කරන ලදී. H_2S සියල්ල ම ඉවත් වන තුරු පෙරනය තටවා ලදී. ආච්‍යාතය සියල් කර, NH_4Cl හා NH_4OH එකතු කරන ලදී. ආච්‍යාතය තුළින් H_2S මුළුලනය කරන ලදී.	පැහැදිලි ආච්‍යාතයක් ලැබුණි.
3. Q_2 පෙර ඉවත් කරන ලදී. H_2S සියල්ලම ඉවත් වන තුරු පෙරනය තටවා, $(NH_4)_2CO_3$ ආච්‍යාතයක් එකතු කරන ලදී.	Q_2 කළ පැහැති අවක්ෂේපයක් සඳුනී. Q_3 සුදු පැහැති අවක්ෂේපයක් සඳුනී.

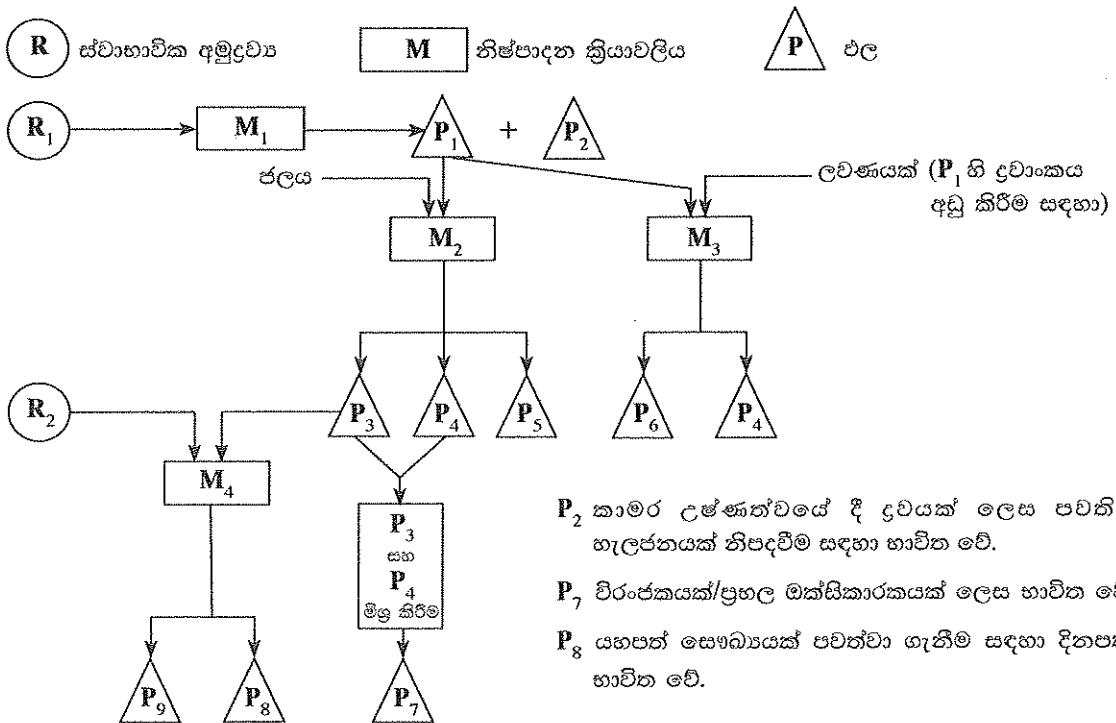
Q_1 , Q_2 , සහ Q_3 අවක්ෂේප සඳහා පරිස්ථිති :




පරීක්ෂණය	නිරීක්ෂණය
1. උණුපුම් තනුක HNO_3 හි Q_1 දුවණය කරන ලදී. සියිල් කිරීමෙන් පසු, දාවණය උදායීන කර KI එක් කරන ලදී.	අවක්ෂේපයක් හා දුම්පුරු පැහැති දාවණයක් යැයුති.
2. උණුපුම් තනුක HCl හි Q_2 දුවණය කරන ලදී. දාවණය සියිල් කර, තනුක NH_4OH එක් කරන ලදී. මෙම මිශ්‍රණයට තවදුරටත් තනුක NH_4OH එක් කරන ලදී.	කොළ පැහැති අවක්ෂේපයක් යැයුති. කොළ පැහැති අවක්ෂේපය දුවණය වී තද නිල් පැහැති දාවණයක් ලැබුති.
3. සාන්දු HCl හි Q_3 දුවණය කර දාවණය පහන්සීම් පරීක්ෂාවට ලක් කරන ලදී.	කොළ පැහැති දැලුලක් ලැබුති.

(i) T දාවකායේ දැනි ලෝහ අයත තුළ ගැනුයාගන්න. (සේවු ද්‍රව්‍ය තැබු)

(ii) Q_1 , Q_2 හා Q_3 අවක්ෂේපවල රසායනික සුදු දියත්තා.

(కోడు 5.0 8)


(c) U දාවනයේ අඩංගු Al^{3+} අයනවල සාන්දුනය තීරණය කිරීම සඳහා පහත දැක්වෙන ස්කියුපිලිවෙල යොදා ගන්නා ලදී. Al^{3+} අයන $\text{pH} = 5$ තී දී ඇලුමිනියම් ඔක්සිජින්ට්, $\text{Al}(\text{C}_9\text{H}_7\text{ON})_3$ ලෙස අවක්ෂේප කිරීම සඳහා U දාවනයෙන් 25.0 cm^3 කට වැඩිපුර 8-හයිමලුවාක්සිකවිනොලින් (වික්සින් ලෙස සාමාන්‍යයෙන් හැඳින්වේ. , $\text{C}_9\text{H}_7\text{ON}$) එකතු කරන ලදී. අවක්ෂේපය පෙරා, ආපුළු ජලයෙන් සේදා, වැඩිපුර KBr අඩංගු උණුසුම් තනුක HCl වල දාවනය කරන ලදී. ඉන්පසු, මෙම දාවනයට $0.025 \text{ mol dm}^{-3} \text{ KBrO}_3$ 25.0 cm^3 එකතු කරන ලදී. ඉහත දැක්වෙන ස්කියුපිලිවෙල කුල සිදු වන ප්‍රතිතියා පහත දැක්වේ.

විදිපුර Br_2 , KI සමඟ ප්‍රතික්‍රියා කිරීමෙන් I_3^- ලබා දේ. ඉන්පසු I_3^- , 0.05 mol dm^{-3} $\text{Na}_2\text{S}_2\text{O}_3$ සමඟ පිශ්චය දැරුකෙය වියයෙන් යොදා ගනිමින් අනුමාපනය කරන ලදී. අන්ත ලක්ෂණයට ලකාවීමට අවශ්‍ය වූ $\text{Na}_2\text{S}_2\text{O}_3$ පරිමාව 15.00 cm^3 වේ. U ද්‍රව්‍යයක්ද ඇති Al^{3+} හි යාන්ත්‍රණය mg dm^{-3} වලින් ගණනය කරන්න. ($\text{Al} = 27$) (ලකුණු 5.0 පි)

9. (a) අනාගතයේ දී ශ්‍රී ලංකාවේ රසායනික කර්මාන්තයක් ස්ථාපිත කිරීමට අවසන් වසරේ විශ්වවිද්‍යාල සිභායෙකු විසින් අදින ලද ගැලීම් සටහන පහත දැක්වේ.

ස්වාහාවික අමුදුව්‍යයන්, නිෂ්පාදන ක්‍රියාවලි සහ එල නිරුපණය කිරීමට පහත දැක්වෙන සංස්කේත භාවිත කෙරේ.

- R_1 සහ R_2 ස්වාහාවික අමුදුව්‍යයන් දෙක හඳුනාගන්න.
- M_1, M_2, M_3, M_4 නිෂ්පාදන ක්‍රියාවලි එහර හඳුනාගන්න. [දදා : ඇමෙන්තියා නිෂ්පාදනය හෝ හේඛර් ක්‍රමය]
- P_1 සිට P_9 දක්වා එල හඳුනාගන්න.
- M_1 සහ M_3 ක්‍රියාවලියන්හි පියවර කෙටියෙන් විස්තර කරන්න. (උපකරණවල රුපසහන් අවශ්‍ය තොවේ)
- M_2 ක්‍රියාවලියේ දී භාවිත කරන උපකරණය ඇද නම් කරන්න.
- M_3 ක්‍රියාවලියේ දී භාවිත වන ලැවණය හඳුනාගන්න.
- P_5, P_6 සහ P_7 හි එක් ප්‍රයෝගනයක් බැඳීන් දෙන්න.

(ලකුණු 7.5 අ)

(b) පහත දී ඇති ලැයිස්තුව භාවිතයෙන් මෙම ප්‍රාණවලට පිළිතුරු සපයන්න.

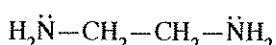
CO_2, CH_4 , වාශ්පයිලි හයිම්බාකාබන, $\text{NO}, \text{NO}_2, \text{N}_2\text{O}, \text{NO}_3^-, \text{SO}_2, \text{H}_2\text{S}, \text{CFC}, \text{CaCO}_3$, දුව පෙට්ටෙශ්ලියම් සහ ගල්අඟුරු

- අම්ල වැසි ඇතිවිම හේතුවන වායුමය විශේෂ දෙකක් හඳුනාගෙන මෙම විශේෂ මගින් අම්ල වැසි ඇතිවන ආකාරය තුළින රසායනික සමිකරණ අනුසාරයෙන් කෙටියෙන් පහදා දෙන්න.
- අම්ල වැසි පරිසරය කෙරෙහි අහිතකර බ්ලපැමි ඇති කරයි. මෙම ප්‍රකාශය කෙටියෙන් සාකච්ඡා කරන්න.
- ගොසිල ඉත්තින දහනය හේතුවෙන් පරිසරයට එකතුවන විශේෂ තුළක්, ඒ එකිනෙකක් මගින් ඇති කරන එක් පාරිසරික ගැටුවක් සමඟ හඳුනාගන්න.
- “කාර්මික සංය්ලේෂිත ද්‍රව්‍ය ඉතා කුඩා ප්‍රමාණවලින් වායුගෝලයේ පැවතීම අහිතකර පාරිසරික ගැටුවලට හේතු වේ.” උදාහරණයක් ලෙස CFC යොදා ගෙන මෙම ප්‍රකාශය පහදා දෙන්න.
- හරිනාගාර වායු පැහක් හඳුනාගෙන ඒ එක් එක් වායුව්, වායුගෝලයට එකතුවන මිනිස් ක්‍රියාකාරකමක් බැඳීන් සඳහන් කරන්න.
- ගොසිල ඉත්තින දහනයේ දී පිටවන ආම්ලික වායුන් ඉවත් කිරීමට ස්වාහාවික ද්‍රව්‍යයක් (ලැයිස්තුවෙන් තොරාගන්න) යොදා ගත හැකි ආකාරය තුළින රසායනික සමිකරණ භාවිතයෙන් කෙටියෙන් පහදා දෙන්න.

(ලකුණු 7.5 අ)

10. (a) X, Y හා Z සංගත සංයෝග වේ. එවාට අශ්වතලිය ජ්‍යාමිතියක් ඇත. X, Y හා Z හි සංගත ගෝලයේ ඇති විශේෂයන්හි (එනම් ලෝහ අයනය සහ එයට සංගත වී ඇති ලිගන) පරමාණුක සංයුතිය පිළිවෙළින්, $\text{FeH}_{10}\text{CNO}_5\text{S}$, $\text{FeH}_8\text{C}_2\text{N}_2\text{O}_4\text{S}_2$ හා $\text{FeH}_6\text{C}_3\text{N}_3\text{O}_3\text{S}_3$ වේ. සංයෝග තුනෙහිම ලෝහ අයනයේ මික්සිකරණ අවස්ථාව එකම වේ. එක් එක් සංයෝගයෙහි ලිගන වර්ග දෙකක් ලෝහ අයනයට සංගත වී ඇත. මෙම සංයෝගවල සංගත නොවූ ඇතායන අශ්වතම් එවා එක ම වර්ගයේ වේ.

S ජලය දාවණයක මවුල අනුපාත $1:1:1$ වන පරිදි X, Y හා Z අඩංගු වේ. S දාවණයහි එක් එක් සංයෝගයේ සාන්දුණය 0.10 mol dm^{-3} වේ. S හි 100.0 cm^3 ට වැවිපුර AgNO_3 දාවණයක් එක් කළ විට කහ පැහැති අවක්ෂේපයක් සයුනි. අවක්ෂේපය ජලයෙන් යෝදා, ස්කන්ධයේ වෙනසක් නොවන තුරු උදුනක වියලුන ලදී. අවක්ෂේපයේ ස්කන්ධය 7.05 g විය. මෙම අවක්ෂේපය සාන්දු NH_4OH හි දුවනය නො වේ.


(කහ පැහැති අවක්ෂේපයේ අඩංගු රසායනික සංයෝගයෙහි සාපේක්ෂ අනුක ස්කන්ධය = 235)

(i) X, Y හා Z හි ලෝහ අයනවලට සංගත වී ඇති ලිගන හඳුනාගන්න.

(ii) කහ පැහැති අවක්ෂේපයේ රසායනික සුනුය ලියන්න.

(iii) X, Y හා Z හි වුළු, හේතු දක්වමින් නීරණය කරන්න.

(iv) එතිලින්ඩිඡැලින් (en) හි වුළුහය පහත දී ඇත.

එතිලින්ඩිඡැලින් එහි නයිලුපන් පරමාණු දෙක මගින් M^{3+} ලෝහ අයනයට සංගත වී Q සංකීරණ අයනය (එනම් ලෝහ අයනය සහ එයට සංගත වී ඇති ලිගන) යාදයි. Q ට අශ්වතලිය ජ්‍යාමිතියක් ඇත.

Q හි වුළු සුනුය ලියා එහි වුළුහය අදින්ත.

සැයු. ලෝහ අයනයට එතිලින්ඩිඡැලින් පමණක් සංගත වී ඇතැයි සලකන්න. ඔබගේ වුළු සුනුයේ එතිලින්ඩිඡැලින් ‘en’ යන කෙටි හැඳින්වීමෙන් පෙන්නුම් කරන්න. (ලකුණු 7.5 පි)

(b) පහත දැක්වෙන දී ඔබට සපයා ඇත.

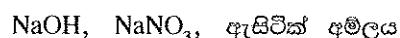
- $\text{Al}(\text{NO}_3)_3$, $\text{Cu}(\text{NO}_3)_2$ සහ $\text{Fe}(\text{NO}_3)_2$ වල 1.0 mol dm^{-3} ජලය දාවණ
- Al, Cu සහ Fe ලෝහ තුරු
- ලවණ සේතුවල හාවිත කිරීමට අවශ්‍ය රසායනික දුවන
- සන්නායක රහුන් (conducting wires) සහ බිජිකර

මිට අමතරව පහත දැක්වෙන දත්ත ද සපයා ඇත.

$$E_{\text{Fe}^{2+}/\text{Fe}}^0 = -0.44 \text{ V}, \quad E_{\text{Al}^{3+}/\text{Al}}^0 = -1.66 \text{ V}, \quad E_{\text{Cu}^{2+}/\text{Cu}}^0 = +0.34 \text{ V}$$

(i) ඉහත සඳහන් ද්‍රව්‍ය උපයෝගි කර ගනීමින් ගොඩනැගිය ගැඹු විදුලුන් රසායනික කොළඹ තුන රුමීයගත කරන්න.

එක් එක් කොළඹයෙහි ඇතෙන්විය සහ කුළුතෙන්විය එවායේ ලකුණු සමග දක්වන්න.


(ii) ඉහත (i) කොටසයෙහි අදින ලද එක් එක් විදුලුන් රසායනික කොළඹයේ,

I. කොළඹ අංකනය දෙන්න.

II. E_{cell}^0 නීරණය කරන්න.

III. හොතික තත්ත්ව දක්වමින් ඉලෙක්ට්‍රොච් ප්‍රතිකියා සඳහා තුළින රසායනික සම්කරණ දෙන්න.

(iii) පහත දැක්වෙන කුමන සංයෝගය (y) ලවණ සේතුවල හාවිතයට සුදුසුදුයි හේතු දක්වමින් පහදා දෙන්න.

(iv) ආරම්භයේ දී වැඩිම E_{cell}^0 පෙන්නුම් කරන විදුලුන් රසායනික කොළඹ සලකන්න. මෙම විදුලුන් රසායනික කොළඹ සකස් කර ඇත්තේ එහි එක් එක් කුරිරියට අදාළ දාවණවල පරීමාවන් සමාන වන ලෙස බවත් එවායේ පරීමාවන් පරික්ෂණය සිදු කරන කාලය තුළ දී නොවෙනස්වන බවත් උපකළුපනය කරන්න.

මෙම කොළඹයෙහි ඉලෙක්ට්‍රොච් දෙක සන්නායක රහුනින් සම්බන්ධ කර යම් කාලයකට පසු ඇතෙන්විය තුළ ඇති ලෝහ අයන සාන්දුණය C mol dm^{-3} බව සොයා ගන්නා ලදී. කුළුතෙන්විය තුළ ඇති ලෝහ අයන සාන්දුණය C අයුරින් ප්‍රකාශ කරන්න. (ලකුණු 7.5 පි)

More Past Papers at
tamilguru.lk

ଆପରତିକା ପତ୍ର

1	1 H	2	2 He															
3	4 Be																	
2	Li																	
11	12 Mg																	
3																		
19	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	
4	K																	
37	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe	
5	Rb																	
55	56 Ba	La- Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn	
6	Cs																	
7	87 Fr	88 Ra	Ac- Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uub	113 Uut	...				

57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr