

நடவடிக்கை போட்டு கூடுதின் பறை (நடவடிக்கை போடு) விழையை, 2018 நடவடிக்கை கல்வியின் பொதுத் தூராதார பந்தீரி (உயர் நூல்) பறித்து, 2018 நடவடிக்கை General Certificate of Education (Adv. Level) Examination, August 2018

2018.08.15 / 0830 - 1030

ரூக்கி விடைகள் I
இரசாயனவியல் I
Chemistry I

02 S I

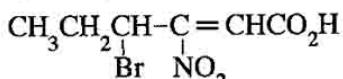
பகு டெவிட்
இரண்டு மணித்தியாலம்
Two hours

ପାଠ୍ୟକ୍ଷେତ୍ର:

- * ආවර්තිතා වූවක් සපයා ඇත.
 - * මෙම ප්‍රශ්න පත්‍රය පිටු 09 කිහිප් යුත්ත වේ.
 - * සියලු ම ප්‍රශ්නවලට පිළිතුරු සපයන්න.
 - * ග්‍රෑන් සත්‍ය භාවිතයට ඉඩ දෙනු කොළඹේ.
 - * උත්තර පත්‍රයේ නියමිත ස්ථානයේ ඔබේ විසාග අංකය උග්‍රයන්න.
 - * උත්තර පත්‍රයේ පිටුපස දී ඇති අනෙක් උපදෙස් සැලකිලිමත් ව කියවන්න.
 - * 1 කිට 50 තෙක් එක් එක ප්‍රශ්නයට (1),(2),(3),(4),(5) යන පිළිතුරුවලින් නිවැරදි හෝ ඉතාමත් ගැඹුපෙන ගොනු පිළිතර තේරු ගෙන, එය උත්තර පත්‍රයේ පිටුපස උපදෙස් පරිදි කිහිරයක් (X) යොද දක්වන්න.

$$\text{සාරවතු ව්‍යුහ නියතය } R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \\ \text{අලුත් ව්‍යුහ නියතය } N_A = 6.022 \times 10^{23} \text{ mol}^{-1} \\ \text{ප්ලැන්ක්ඩේ නියතය } h = 6.626 \times 10^{-34} \text{ Js} \\ \text{ආලෝකයේ ප්‍රවේශය } c = 3 \times 10^8 \text{ m s}^{-1}$$

1. තුම් අවස්ථාවේ පවතින වායුමය Co^{3+} අයනයක ඇති යුගලනය නොවූ ඉලෙක්ට්‍රොන් සංඛ්‍යාව වනුයේ,
 (1) 1 (2) 2 (3) 3 (4) 4 (5) 5


2. පරමාණුවක පරමාණුක කාක්ෂිකයක හැඩය හා ආක්‍රිත වන්නේ කුමන ක්වේන්ටම් අංකය/අංක (n, l, m_l, m_s) ඇ?
 (1) l (2) m_l (3) n හා l (4) n හා m_l (5) l හා m_l

3. පහත දක්වා ඇති සංයෝගයේ IUPAC නාමය කුමක් ඇ?

$$\text{CH}_3\text{CH}_2\text{CH}-\text{C}=\text{CHCO}_2\text{H}$$

$$\quad \quad \quad \text{Br} \quad \text{NO}_2$$

(1) 4-bromo-3-nitro-2-hexenoic acid
 (2) 4-bromo-3-nitro-2-hexenoic acid
 (3) 3-nitro-4-bromo-2-hexenoic acid
 (4) 3-nitro-4-bromo-2-hexenoic acid
 (5) 3-bromo-4-nitro-4-hexenoic acid

7. AgI හා AgBr හි අවක්ෂේප ආපුරුතු ජලය පුළු ප්‍රමාණයකට එකතු කරන ලදී. මෙම මිශ්‍රණය 25 °C හි දී සම්බුද්ධිකතාවයට එළඹීමට ඉඩ හරින ලදී. සම්බුද්ධිකතාවයේදී සහයන් දෙකම පද්ධතියෙහි තිබෙන බව නිරීක්ෂණය කරන ලදී. පහත සඳහන් කුමන සම්බන්ධතාව මෙම දාවනය සඳහා යෙදිය හැකි ද?

$$(25^{\circ}\text{C} \text{ හි } K_{\text{sp(AgI)}} = 8.0 \times 10^{-17} \text{ mol}^2 \text{ dm}^{-6}, K_{\text{sp(AgBr)}} = 5.0 \times 10^{-13} \text{ mol}^2 \text{ dm}^{-6})$$

$$(1) [\text{Br}^-] = \sqrt{5.0 \times 10^{-13}} \text{ mol dm}^{-3} \text{ සහ } [\text{I}^-] = \sqrt{8.0 \times 10^{-17}} \text{ mol dm}^{-3}$$

$$(2) [\text{Br}^-] [\text{I}^-] = [\text{Ag}^+]^2$$

$$(3) [\text{Ag}^+] = \left(\sqrt{5.0 \times 10^{-13}} + \sqrt{8.0 \times 10^{-17}} \right) \text{ mol dm}^{-3}$$

$$(4) \frac{[\text{Br}^-]}{[\text{I}^-]} = \frac{5.0}{8.0} \times 10^4$$

$$(5) [\text{Ag}^+] = [\text{Br}^-] = [\text{I}^-]$$

8. පහත සඳහන් කුමන ප්‍රකාශය අසිත්තා වේ ද?

(1) ආවර්තනා වගුවේ දෙවන කාණ්ඩයේ සියලු ම ලෝහවල කාබනේට ජලයේ අඩාවා ව්‍යුත් දී ජ්වායේ බයිකාබනේට දාවා වේ.

(2) ආවර්තනා වගුවේ දෙවන කාණ්ඩයේ සියලු ම ලෝහවල හයිලුවාක්සයිඩ් ජලයේ දාවා වේ.

(3) ආවර්තනා වගුවේ දෙවන කාණ්ඩයේ සියලු ම ලෝහවල හයිට්‍රේට ජලයේ දාවා වේ.

(4) Na සහ Mg වල ඔක්සයිඩ් සහ හයිලුවාක්සයිඩ් හාස්මික ගුණ පෙන්වන අතර Al හි ඔක්සයිඩ් සහ හයිලුවාක්සයිඩ් උගායුණු ලක්ෂණ පෙන්නුම් කරයි.

(5) Si සහ S වල හයිට්‍රේට දුරටත් ආමිලික ගුණ පෙන්නුම් කරයි.

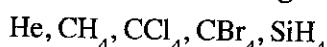
9. පරමාණුක අරයයන් වැඩි වන පිළිවෙළට මූල්‍යවා දී ඇත්තේ (වමේ සිට දකුණට) පහත කුමන ලැයිස්තුවෙහි ද?

(1) Li, Na, Mg, S

(2) C, Si, S, Cl

(3) B, C, N, P

(4) Li, Na, K, Ca


(5) B, Be, Na, K

10. A හා B ද්‍රව්‍ය පරේපරණ දාවනයක් සාදයි. නියත උෂේණත්වයෙහි ඇති සංවාත දෑස් බලුනාක් කුළ වාෂ්පය සමග සම්බුද්ධිකතාවයෙහි ඇති A හා B දාවනයන්හි මිශ්‍රණයක් සළකන්න. P_A^0 හා P_B^0 යනු පිළිවෙළින් A හා B හි සන්තාපීත වාෂ්ප පිළින වන අතර බලුනෙහි මුළු පිහිනය P හා වාෂ්ප කලාපයෙහි A හි මුළු හාය X_A^0 වේ. මෙම පද්ධතිය සම්බන්ධයෙන් පහත සඳහන් කුමක් නිවැරදි වේ ද?

$$(1) P = (P_A^0 - P_B^0) X_A^0 + P_B^0 \quad (2) \frac{1}{P} = \left(\frac{1}{P_A^0} - \frac{1}{P_B^0} \right) X_A^0 + \frac{1}{P_B^0} \quad (3) P = (P_A^0 + P_B^0) X_A^0 - P_B^0$$

$$(4) \frac{1}{P} = \left(\frac{1}{P_B^0} - \frac{1}{P_A^0} \right) \frac{1}{X_A^0} \quad (5) \frac{1}{P} = \left(\frac{1}{P_A^0} - \frac{1}{P_B^0} \right) \frac{1}{X_A^0}$$

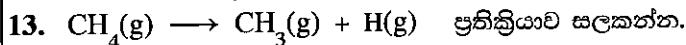
11. පහත සඳහන් ද්‍රව්‍යන්හි තාපාංක වැඩි වන පිළිවෙළ වනුයේ,

(1) $\text{CH}_4 < \text{He} < \text{SiH}_4 < \text{CCl}_4 < \text{CBr}_4$ (2) $\text{He} < \text{SiH}_4 < \text{CH}_4 < \text{CCl}_4 < \text{CBr}_4$

(3) $\text{He} < \text{CH}_4 < \text{SiH}_4 < \text{CCl}_4 < \text{CBr}_4$ (4) $\text{CH}_4 < \text{He} < \text{SiH}_4 < \text{CBr}_4 < \text{CCl}_4$

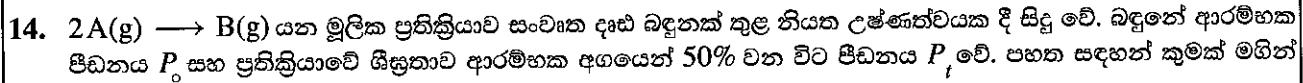
(5) $\text{He} < \text{CH}_4 < \text{CCl}_4 < \text{SiH}_4 < \text{CBr}_4$

12. පහත දැක්වෙන ජ්වායින් නිවැරදි ප්‍රකාශය භූජනාගන්න.

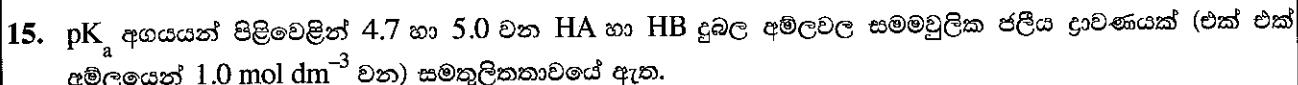

(1) හයිට්‍රේන් පරමාණුවක $n = 2 \rightarrow n = 1, n = 3 \rightarrow n = 2$ සහ $n = 4 \rightarrow n = 3$ ඉලක්ට්‍රොන් සංක්‍රමණ අකුරෙන් වැඩිම ගක්තියක් පිටකරනුයේ $n = 3 \rightarrow n = 2$ වල දී ය.

(2) OF_2, OF_4 සහ SF_4 විශේෂ අකුරෙන් අඩුවෙන්ම ස්ථායි වන්නේ SF_4 ය.

(3) Li, C, N, Na සහ P මූල්‍යවා අකුරෙන් විදුලුත් සාණනාව අඩුම මූල්‍යවාය Li වේ.


(4) $(\text{Li} \text{ සහ } \text{F}), (\text{Li}^+ \text{ සහ } \text{F}^-), (\text{Li}^+ \text{ සහ } \text{O}^{2-})$ සහ $(\text{O}^{2-} \text{ සහ } \text{F}^-)$ යුගල වල, අරයයන්හි වැඩිම වෙනස ඇත්තේ $\text{Li}^+ \text{ සහ } \text{O}^{2-}$ අතර ය.

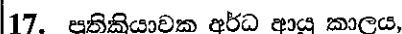
(5) CH_2Cl_2 වල ද්‍රව්‍ය කලාපයෙහි පවතින එකම අන්තර අණුක බල වර්ගය වන්නේ ද්වීමුල-ද්වීමුල බල වේ.



ඉහත ප්‍රතික්‍රියාවේ සම්මත එන්තැල්පි වෙනස වනුයේ,

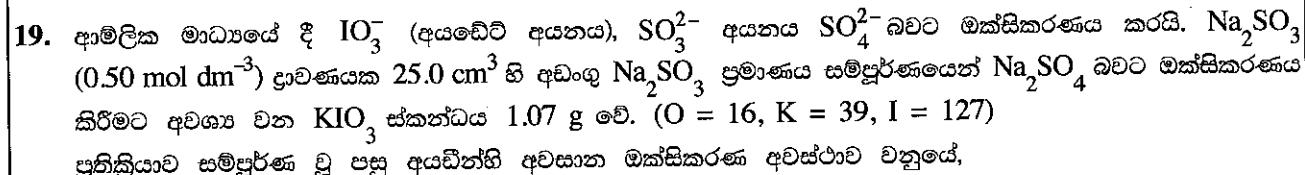
- (1) මිනේන්හි පළමු C—H බන්ධනයයි විසටනය සඳහා සම්මත එන්තැල්පි වෙනසයි.
- (2) මිනේන්හි සම්මත පරමාණුකරණ එන්තැල්පි වෙනසයි.
- (3) මිනේන්හි සම්මත පළමු අයනිකරණ එන්තැල්පි වෙනසයි.
- (4) මිනේන්හි සම්මත බන්ධන විසටන එන්තැල්පි වෙනසයි.
- (5) මිනේන්හි මුක්කඩාන්ඩික සැදිමේ සම්මත එන්තැල්පි වෙනසයි.

$$(1) \frac{P_t}{P_0} = \frac{1}{2} \quad (2) \frac{P_t}{P_0} = \frac{1}{\sqrt{2}} \quad (3) \frac{P_t}{P_0} = \frac{1+\sqrt{2}}{2\sqrt{2}} \quad (4) \frac{P_t}{P_0} = \frac{\sqrt{2}}{1+\sqrt{2}} \quad (5) \frac{P_t}{P_0} = \frac{\sqrt{2}-1}{1+\sqrt{2}}$$



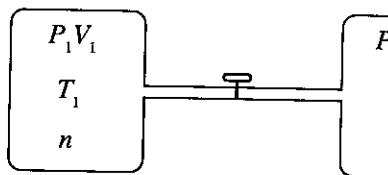
$\log \left(\frac{[\text{A}^-]}{[\text{B}^-]} \right)$ හි අගය ආසන්න වගයෙන් සමාන වනුයේ,

- (1) 23.5
- (2) -0.3
- (3) 0.3
- (4) 0.94
- (5) 1.06

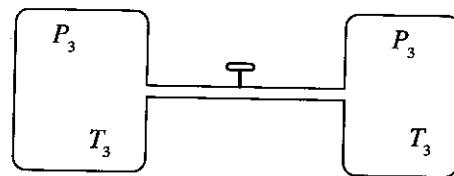

- (1) CH_3COCl සමග ප්‍රතික්‍රියා කර ගිනයිල් එස්ටරයක් සාදයි.
- (2) බෝර්මින් දියර සමග ප්‍රතික්‍රියා කර සුදු පැහැති අවක්ෂේපයක් ලබා දේ.
- (3) NaHCO_3 සමග පිරියම් කළ විට CO_2 වායුව පිට කරයි.
- (4) NaOH හමුවේ $\text{C}_6\text{H}_5\text{N}_2^+ \text{Cl}^-$ සමග පිරියම් කළ විට වරණවත් සංයෝගයක් ලබා දේ.
- (5) උදාහිත FeCl_3 සමග පිරියම් කළ විට වරණවත් (දම් පැහැයට තුරු) දාවණයක් ලබා දේ.

- (1) සැමවිටම ප්‍රතික්‍රියකවල ආරම්භක සාන්දුණයෙන් ස්වායන්ත වේ.
- (2) සැමවිටම සිසුතා නියතය මත රඳු පවතී.
- (3) සැමවිටම ප්‍රතික්‍රියාවෙහි පෙළින් ස්වායන්ත වේ.
- (4) සැමවිටම උෂ්ණත්වයෙන් ස්වායන්ත වේ.
- (5) මුළු ප්‍රතික්‍රියා කාලය මෙන් දෙගුණයකට සමාන වේ.

- (1) විද්‍යුත් විවිධේයේ ස්වභාවය මත ය.
- (2) උෂ්ණත්වය මත ය.
- (3) විද්‍යුත් විවිධේයා වල සාන්දුණ මත ය.
- (4) ඉලෙක්ට්‍රොඩ් වල පැහැදික ක්ෂේත්‍රවල මත ය.
- (5) ඉලෙක්ට්‍රොඩ් සාදන ලේඛ විරෝ මත ය.


ප්‍රතික්‍රියාව සම්පූර්ණ වූ පසු අයවින්හි අවසාන ඔක්සිකරණ අවස්ථාව වනුයේ,

- (1) -1
- (2) 0
- (3) +1
- (4) +2
- (5) +3



- (1) I කාණ්ඩයේ සියලු ම මූලද්‍රව්‍ය ජලය සමග ප්‍රතික්‍රියා කර H_2 වායුව නිදහස් කරයි.
- (2) Li හැර I කාණ්ඩයේ අනිකුත් සියලු ම මූලද්‍රව්‍ය N_2 වායුව සමග ප්‍රතික්‍රියා කරයි.
- (3) II කාණ්ඩයේ සියලු ම මූලද්‍රව්‍ය N_2 වායුව සමග ප්‍රතික්‍රියා කරයි.
- (4) වැශීපුර O_2 සමග Na ප්‍රතික්‍රියා කර Na_2O_2 ලබා දෙන අතර K, KO_2 ලබා දෙයි.
- (5) N -ගොනුවේ සියලු ම මූලද්‍රව්‍ය තොද ඔක්සිභාරක වේ.

21. පරිපූරණ වායුවක් අඩංගු දාඩ් බලුන් දෙකකින් සමන්වීත පද්ධතියක් රුපසටහනෙහි දක්වා ඇත. කපාටය විවිධ කිරීමෙන් බලුන් එකිනෙක හා සම්බන්ධ කළ හැකි වේ. කපාටය විවිධ කළ විට පද්ධතිය A සැකසුමේ සිට B සැකසුම දක්වා වෙනස් වේ. සාමාන්‍යයෙන් n , P , V සහ T මගින් පිළිවෙළින් මුළු සංඛ්‍යාව, පිළිනය, පරිමාව හා උෂ්ණත්වය නිරුපණය කෙරේ.

සැකසුම A (කපාටය වසා ඇත)

සැකසුම B (කපාටය විවිධව ඇත)

මෙම පද්ධතිය පිළිබඳ ව පහත දැක්වෙන ක්‍රමන සම්බන්ධය තිබැරදි වේ ද?

$$(1) P_1 V_1 = P_2 V_2$$

$$(2) \frac{P_3 T_1}{P_1} + \frac{P_3 T_2}{P_2} = 2T_3$$

$$(3) \frac{T_1}{P_1} = \frac{T_2}{P_2}$$

$$(4) P_1 T_1 = P_2 T_2$$

$$(5) P_1 V_1 + P_2 V_2 = P_3 (V_1 + V_2)$$

22. ආවර්තනා වගුවේ $3d$ -මුලද්‍රව්‍ය පිළිබඳ ව පහත ක්‍රමන වගන්තිය අසාක්ෂ වන්නේ ද?

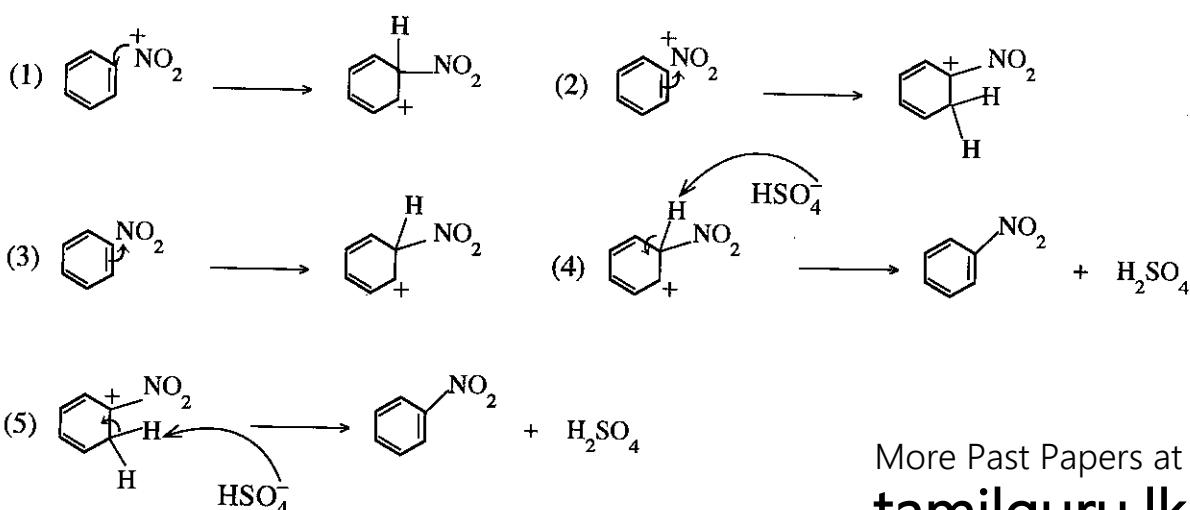
(1) පරිමාජුක අරයයන්, එම ආවර්තනයේ ඇති σ -ගොනුවේ මුලද්‍රව්‍යයන්හි පරිමාජුක අරයයන්ට වඩා කුඩා වේ.

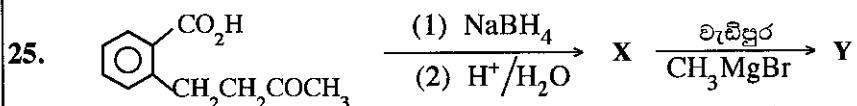
(2) සනාත්වය, එම ආවර්තනයේ ඇති σ -ගොනුවේ මුලද්‍රව්‍යයන්හි සනාත්වයට වඩා වැඩි වේ.

(3) V_2O_5 , CrO_3 හා Mn_2O_7 ආම්ලික මික්සයිඩ වේ.

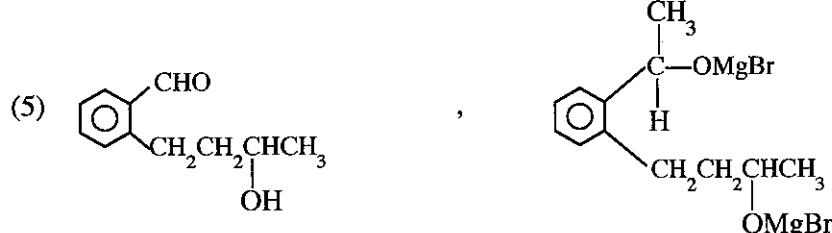
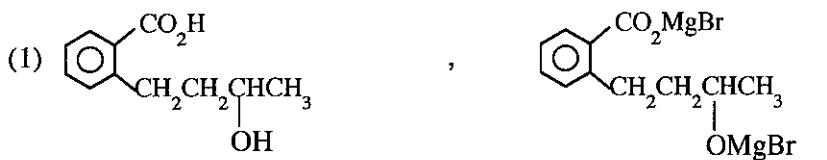
(4) පලමු අයනීකරණ ගක්ති, එම ආවර්තනයේ ඇති σ -ගොනුවේ මුලද්‍රව්‍යයන්හි පලමු අයනීකරණ ගක්තිවලට වඩා අඩු වේ.

(5) කොබේල්ට්‍රේ සංයෝගවල කොබේල්ට්‍රේ හි වඩාත්ම සුලභ මික්සිකරණ අවස්ථා වනුයේ +2 හා +3 ය.

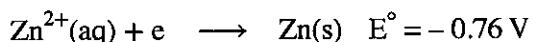

23. එකිනෙකට වෙනස් උෂ්ණත්ව දෙකක දී $MO(s) \rightarrow M(s) + \frac{1}{2} O_2(g)$ ප්‍රතික්‍රියාව සඳහා සම්මත ගිබිස් ගක්ති වෙනස පහත දී ඇත.

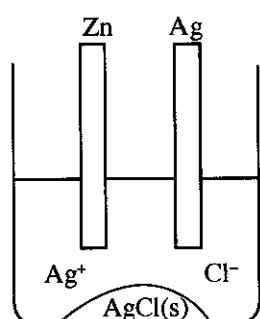

T/K	$\Delta G^\circ / \text{kJ mol}^{-1}$
1000	-100.2
2000	-148.6

ප්‍රතික්‍රියාවෙහි සම්මත එන්ලොපි වෙනස වනුයේ,

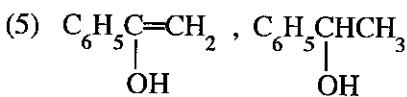
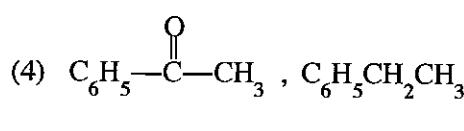
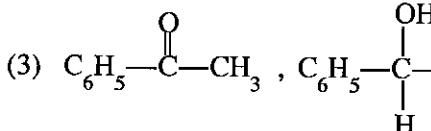
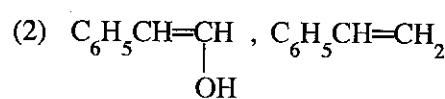
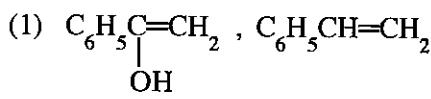
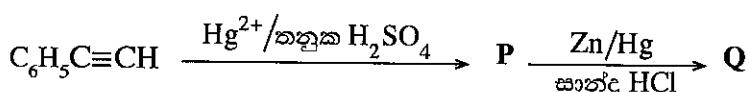


- (1) $248.8 \text{ J K}^{-1} \text{ mol}^{-1}$ (2) $-248.8 \text{ J K}^{-1} \text{ mol}^{-1}$ (3) $-48.4 \text{ J K}^{-1} \text{ mol}^{-1}$
 (4) $348.4 \text{ J K}^{-1} \text{ mol}^{-1}$ (5) $48.4 \text{ J K}^{-1} \text{ mol}^{-1}$

24. සාන්ද HNO_3 / සාන්ද H_2SO_4 මගින් බෙන්සින් නයිලෝකරණ යන්තුණයේ දී තිබැරදි පියවරක් දක්වන්නේ පහත සඳහන් ක්‍රමකින් ද?


ອະນຸຍາ ສັດທະນີ ປະດີທີ່ ອັນດີມີລືວ່ວ່າລະກີ X ແລະ Y ຕີ່ ວິທີ ພິລີວ່ວ່າລີນ ວິທີເກີດ


26. $(\text{NH}_4)_2\text{CO}_3(\text{s})$, $(\text{NH}_4)_2\text{Cr}_2\text{O}_7(\text{s})$ ແລະ $\text{NH}_4\text{NO}_3(\text{s})$ ຮັ້ນ ກລັນ ວິວ ແລະ ນັດເລື່ອນ ອັນດີມີລືວ່າລີນ ອັນດີມີລືວ່າ

- (1) NH_3 , N_2 ແລະ NO_2 (2) N_2O , N_2 ແລະ NH_3 (3) NH_3 , N_2 ແລະ N_2O
 (4) N_2 , N_2O ແລະ NH_3 (5) N_2 , NH_3 ແລະ N_2O







27. ສັດທະນີ AgCl ດູວ່າລັດຍັກ ແລະ AgCl(s) ອັນດີມີລືວ່າ ລົກຮັດ Zn ອູරັດ ແລະ Ag ອູරັດ ຮູ່ປະຍັດ ດູວ່າ ພິລີວ່າ ລ່ອງໜ ອູරັດ ແດ້ ສັດທະນີ ສັດທະນີ ມີເກີດ ສັດທະນີ ກລັນ ວິວ ດູວ່າ ພິລີວ່າ ສັດທະນີ ອູມັດ ສິດູ ເວີ ດູວ່າ ດູວ່າ

- (1) Zn ດີຍ ເວີ, Ag ອູນ່ພັນ ເວີ, AgCl(s) ດີຍ ເວີ.
 (2) Zn ດີຍ ເວີ, Ag ດີຍ ເວີ, AgCl(s) ດີຍ ເວີ.
 (3) Zn ດີຍ ເວີ, Ag ດີຍ ເວີ, AgCl(s) ອູນ່ພັນ ເວີ.
 (4) Zn ອູນ່ພັນ ເວີ, Ag ດີຍ ເວີ, AgCl(s) ດີຍ ເວີ.
 (5) ດູວ່າລັດຍັກ ສັດທະນີ ສັດທະນີ ສັດທະນີ ອູມັດ ສິດູ ເວີ.

28. පහත දැක්වෙන ප්‍රතික්‍රියා අනුපිළිවෙළෙහි P සහ Q හි ව්‍යුහ පිළිච්චින් වනුයේ,

29. පහත සඳහන් කුමන වගන්තිය බහුඅවයවක පිළිබඳ ව වැරදි ද?

- (1) බේක්ලයිට් තාප ස්ථාපන බහුඅවයවයකි.
- (2) වෙශ්ලෝන් තාප ප්‍රවිකාරය බහුඅවයවයකි.
- (3) නයිලෝන් 6,6 සෑදී ඇත්තේ 1,6-චිස්ංග්‍රැඩිනොහොස්න් සහ හෙක්ස්ංඩ්බිසිංඩික් අම්ලය අතර ආකළන බහුඅවයවිකරණය මගිනි.
- (4) වෙරිලින් සෑදී ඇත්තේ එතිලින් ග්ලයිකෝල් සහ වෙරිකැලික් අම්ලය අතර සංසනන බහුඅවයවිකරණය මගිනි.
- (5) ස්වාභාවික රබර *cis*-පොලිංඩිසොප්‍රින් දාමවලින් සමන්විත ය.

30. $\text{S}_2\text{O}_3^{2-}(\text{aq}) + 2\text{H}^+(\text{aq}) \longrightarrow \text{H}_2\text{O}(\text{l}) + \text{SO}_2(\text{g}) + \text{S}(\text{s})$ යන ප්‍රතික්‍රියාවෙහි $\text{S}_2\text{O}_3^{2-}$ අනුබද්ධයෙන් පෙළ (m) සෙවීම සඳහා පරික්ෂණයක් සිදු කරන ලදී. අම්ල දාවණයකට 0.01 mol dm^{-3} $\text{S}_2\text{O}_3^{2-}$ විවිධ පරිමාවන් (v) එකතු කරමින් ප්‍රතික්‍රියාවෙහි ආරම්භක දිසුනාව (R) මතින ලදී. ප්‍රතික්‍රියා මූල්‍යයන් නියතව පවත්වා ගත් නමුත් මුළු පරිමාව (V) වෙනස් වීමට ඉඩ හරින ලදී. ප්‍රතික්‍රියාවෙහි ආරම්භක දිසුනාව පිළිබඳ ව පහත සඳහන් කුමන සම්බන්ධය නිවැරදි වේ ද?

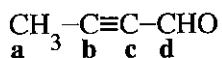
$$(1) R \propto \left(\frac{v}{V}\right)^m \quad (2) R \propto v^m \quad (3) R \propto v^{\frac{1}{m}} \quad (4) R \propto \left(\frac{v}{V}\right)^{\frac{1}{m}} \quad (5) R \propto V^m$$

- අංක 31 සිට 40 තෙක් එක් එක් ප්‍රශ්නය සඳහා දී ඇති (a), (b), (c) සහ (d) යන ප්‍රතිවාර හතර අනුරෙන්, එකක් හෝ වැඩි සංඛ්‍යාවක් හෝ නිවැරදි ය. නිවැරදි ප්‍රතිවාරය/ප්‍රතිවාර කවරේ දැයි තෝරා ගන්න.

- (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද
- (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද
- (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද
- (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද

වෙතත් ප්‍රතිවාර සංඛ්‍යාවක් හෝ සංයෝගනයක් හෝ නිවැරදි නම් (5) මත ද

උත්තර පත්‍රයෙහි දැක්වෙන උපදෙස් පරිදි ලක්ෂණ කරන්න.


ඉහත උපදෙස් සම්පූර්ණය

(1)	(2)	(3)	(4)	(5)
(a) සහ (b) පමණක් නිවැරදියි	(b) සහ (c) පමණක් නිවැරදියි	(c) සහ (d) පමණක් නිවැරදියි	(d) සහ (a) පමණක් නිවැරදියි	වෙනත් ප්‍රතිවාර සංඛ්‍යාවක් හෝ සංයෝගනයක් හෝ නිවැරදියි

31. දුබල අම්ලයක් (නියත පරිමාවක්) හා දුබල හස්මයක් අතර අනුමාපනයක් සලකන්න. පහත සඳහන් කුමක්/කුමන ඒවා දුබල අම්ලයෙහි සාන්දුණයෙන් ස්වායන්ත්‍ර වේ ද?

- (a) සමකතා ලක්ෂායේ දී pH අගය
- (b) අන්ත ලක්ෂාය කරා ලැයා වීමට අවශ්‍ය දුබල හස්මයෙහි පරිමාව
- (c) දුබල අම්ලයෙහි විසටන නියතය
- (d) අනුමාපන ජ්ලාස්කුවෙහි ඇති දාවණයේ $[\text{H}^+] \times [\text{OH}^-]$ අගය

32. පහත දී ඇති අණුව පිළිබඳ ව පහත කුමන වගන්තිය/වගන්ති සහස වේ ද?

- (a) කාබන් පරමාණු භතරම එකම තැලයේ පිහිටියි.
- (b) C_d-H සහ C_d-C_e බන්ධන අතර කෝණය දළ වගයෙන් 120° වේ.
- (c) C_b සහ C_e අතර $\text{C}-\text{C}$ බන්ධන දෙකක් සහ $\text{C}-\text{C}$ බන්ධනයක් ඇත.
- (d) C_b සහ C_e අතර $\text{C}-\text{C}$ බන්ධනයක් සහ $\text{C}-\text{C}$ බන්ධන දෙකක් ඇත.

33. Na_2CO_3 නිෂ්පාදනය පිළිබඳ ව සහස වන්නේ පහත සඳහන් කුමන වගන්තිය/වගන්ති ද?

- (a) හාටිත කරන එක අමුවුව්‍යයක් CO_2 වේ.
- (b) NH_3 වලින් සන්තාප්ත ජලය NaCl හා CO_2 අතර ප්‍රතික්‍රියාව තාපාවගෝෂක වේ.
- (c) නිෂ්පාදන ක්‍රියාවලිය අදියර පහකින් සමන්වීන වේ.
- (d) ක්‍රියාවලියේ දී හාටිත වන NH_3 වැඩි ප්‍රමාණයක් නැවත ලබාගත හැක.

34. මූලික ප්‍රතික්‍රියාවක පෙළ පරික්ෂණකමක නිරූපය කිරීමේ දී උෂ්ණත්වය නියත අයයක පවත්වා ගත යුතු වන්නේ,

- (a) ප්‍රතික්‍රියාවහි පෙළ උෂ්ණත්වය මත රඳාපවතින නිසා ය.
- (b) සැලුයන ගක්කිය උෂ්ණත්වය සමග වෙනස් වන නිසා ය.
- (c) ප්‍රතික්‍රියාවහි යන්ත්‍රණය උෂ්ණත්වය සමග වෙනස් වන නිසා ය.
- (d) දිසුනා නියතය උෂ්ණත්වය සමග වෙනස් වන නිසා ය.

35. පහත සඳහන් කුමන වගන්තිය/වගන්ති එතින් සහ එතයින් පිළිබඳ ව සහස වේ ද?

- (a) CaC_2 ජලය සමග ප්‍රතික්‍රියා කර එතයින් සාදයි.
- (b) CaC_2 ජලය සමග ප්‍රතික්‍රියා කර එතින් සාදයි.
- (c) ඇමෝරිකාන AgNO_3 සමග එතින් ප්‍රතික්‍රියා කර අවක්ෂේපයක් ලබා දේ.
- (d) ඇමෝරිකාන Cu_2Cl_2 සමග එතයින් ප්‍රතික්‍රියා කර අවක්ෂේපයක් ලබා දේ.

36. හැලුරන පිළිබඳ ව පහත සඳහන් කුමන වගන්තිය/වගන්ති සහස වන්නේ ද?

- (a) කාණ්ඩියේ පහලට හැලුරනවල තාපාංක වැඩි වේ.
- (b) අනෙකුත් හැලුරන මෙන් නොව, ග්ලුවොරින්ට F_2 හි හැර, අන් සැමවිම (-1) ඔක්සිකරණ අවස්ථාව ඇත.
- (c) සියලු ම හැලුරන භෞද ඔක්සිභාරක වේ.
- (d) ආවර්තිතා වගුවේ සියලු ම මූලදුව්‍ය අතරින් ග්ලුවොරින් වඩාත්ම ප්‍රතික්‍රියාක්ලි වන තමුන් එය නිෂ්පාදන වායු සමග ප්‍රතික්‍රියා නොකරයි.

37. සංචාර දාඩ බදුනක් තුළ සිදුවන $\text{C}(\text{s}) + \text{CO}_2(\text{g}) \rightleftharpoons 2\text{CO}(\text{g})$ ප්‍රතික්‍රියාව සඳහා 700°C හා 800°C හි දී $\text{CO}(\text{g})$ එල ප්‍රතිගත අනුපිළිවෙළින් 60% හා 80% වේ. පහත සඳහන් කුමන වගන්තිය/වගන්ති ඉහත ප්‍රතික්‍රියාව සම්බන්ධයෙන් තිබයේදී වේ ද?

- (a) ප්‍රතික්‍රියාව තාපාංකය වේ.
- (b) ප්‍රතික්‍රියාව තාපදායක වේ.
- (c) උෂ්ණත්වය අඩු කිරීම ආපසු ප්‍රතික්‍රියාවට හිතකර වේ.
- (d) $\text{C}(\text{s})$ ඉවත් කිරීම මැනීන් සමඟුලිතතාව ප්‍රතික්‍රියාක දෙසට නැඹුරු කළ හැක.

38. සයික්ලොපාපේන් → ප්‍රොපින් මූලික ප්‍රතික්‍රියාවකි.

- පහත සඳහන් කුමන වගන්තිය/වගන්ති ඉහත ප්‍රතික්‍රියාව සම්බන්ධයෙන් තිබයේදී වේ ද?
- (a) ප්‍රතික්‍රියාවහි අර්ථ ආපු කාලය සයික්ලොපාපේන් සාන්දුණය මත රඳා පවතී.
- (b) ප්‍රතික්‍රියාවහි දිසුනාව ප්‍රොපින් සාන්දුණය මත රඳා නොපවතී.
- (c) සක්‍රියන ගක්කියට වඩා වැඩි ගක්කියක් ඇති සයික්ලොපාපේන් අණුවල හාගය, උෂ්ණත්වය වැඩි වීමත් සමග වැඩි වේ.
- (d) ප්‍රතික්‍රියාව ද්වීජාක ගැටුමක් හරහා සිදු වේ. (අණුකතාව = 2)

39. පහත සඳහන් කුමන වගන්තිය/වගන්ති 3-හෙක්සින් පිළිබඳ ව සහස වේ ද?

- (a) ජ්‍යාමිතික සමාවයවිකතාව නොපෙන්වයි.
- (b) ප්‍රකාශ සමාවයවිකතාව පෙන්වයි.
- (c) H_2/Pd සමග ප්‍රතික්‍රියා කරවූ විට ලැබෙන සංයෝගය ප්‍රකාශ සමාවයවිකතාව නොපෙන්වයි.
- (d) HBr සමග ප්‍රතික්‍රියා කරවූ විට ලැබෙන සංයෝගය ප්‍රකාශ සමාවයවිකතාව පෙන්වයි.

40. නයිට්‍රෝන් වතුය පිළිබඳ ව පහත සඳහන් කුමන වගන්තිය/වගන්ති තිවැරදි වන්නේ ද?
- (a) වායුගෝලයේ ඇති N_2 තිර වන්නේ වායුගෝලීය හා කාර්මික තිර කිරීමෙන් පමණි.
- (b) වායුගෝලීය තිර කිරීමේදී N_2 ඔක්සිඥරණය වේ.
- (c) කාර්මික තිර කිරීමේදී N_2 ඔක්සිඥරණය වේ.
- (d) වායුගෝලීය තිර කිරීමේදී සැදෙන නයිට්‍රෝනය හා නයිට්‍රිට්‍රෝනය නිසා පොලොට මත තැන්පත් වූ විට එවා ප්‍රෝටීන් සැදීමට ගාක මගින් යොදා ගනී.
- අංක 41 සිට 50 තක් එක් එක් ප්‍රශ්නය සඳහා ප්‍රකාශ දෙක බැඳින් ඉදිරිපත් කර ඇත. එම ප්‍රකාශ යුගලයට තොදීන් ම ගැලපෙනුයේ පහත විදුවෙහි දක්වෙන පරිදි (1),(2),(3),(4) සහ (5) යන ප්‍රතිචාරවලින් කවර ප්‍රතිචාරය දැසී තෝරා උත්තර පත්‍රයෙහි උච්ච ලෙස ලකුණු කරන්න.

ප්‍රතිචාරය	පළමුවෙනි ප්‍රකාශය	දෙවනේ ප්‍රකාශය
(1)	සත්‍ය වේ.	සත්‍ය වන අතර, පළමුවැනි ප්‍රකාශය නිවැරදි ව පහද දෙයි.
(2)	සත්‍ය වේ.	සත්‍ය වන නමුත් පළමුවැනි ප්‍රකාශය නිවැරදි ව පහද තොදුනුයි.
(3)	සත්‍ය වේ.	අසත්‍ය වේ.
(4)	අසත්‍ය වේ.	සත්‍ය වේ.
(5)	අසත්‍ය වේ.	අසත්‍ය වේ.

	පළමුවෙනි ප්‍රකාශය	දෙවනේ ප්‍රකාශය
41.	$MgCO_3$ වලට වඩා $BaCO_3$ තාපස්ථායි වේ.	දෙවන කාණ්ඩයේ කැට්ටායනවල බුවීකරණ බලය කාණ්ඩයේ පහළට යන විට අඩු වේ.
42.	ඇම්නයක නයිට්‍රෝන් මත ඇති එකසර ඉලෙක්ට්‍රෝන යුගලය H^+ සමග බන්ධනයක් සැදීමට ඇති ප්‍රව්‍යන්නාට ඇල්කොහොලයක ඔක්සිජන් මත ඇති එකසර ඉලෙක්ට්‍රෝන යුගලයට වඩා අඩු ය.	මක්සිජන් වලට වඩා නයිට්‍රෝන් විදුත් සාර්කාවයෙන් අඩු ය.
43.	උත්ප්‍රේරකයක් යෙදීමෙන් සම්බුද්ධිතනාවයේ ඇති ප්‍රතිත්ව්‍යාවක් ඉදිරියට (එනම් සම්බුද්ධි ලක්ෂාය දක්වා විස්තාපනය කිරීම) පෙළඳවීම කළ හැක.	උත්ප්‍රේරකය මගින් ඉදිරි ප්‍රතිත්ව්‍යාව සඳහා පමණක් අඩු සක්‍රියන ගක්තියක් ඇති මාර්ගයක් සපයයි.
44.	CO_3^{2-} හා SO_3^{2-} අයනවලට සමාන හැඩියන් ඇත.	CO_3^{2-} හා SO_3^{2-} යන දෙකෙක්ම මධ්‍ය පරමාණුවේ එකසර ඉලෙක්ට්‍රෝන යුගල් ඇත.
45.	$CH_3CH_2CH_2OH$ හි තාපාංකය CH_3CH_2CHO හා CH_3COCH_3 හි තාපාංකවලට වඩා වැඩි ය.	කාබන් ඔක්සිජන් ද්විත්ව බන්ධනය, කාබන් ඔක්සිජන් තනි බන්ධනයට වඩා ගක්තිමත් ය.
46.	එකලිත පද්ධතියක් තුළ ස්වයාසිද්ධාව සිදු වන ප්‍රතිත්ව්‍යාවක් සඳහා සැම්වම සාර්කාව ගිවිස ගක්ති වෙනසක් ඇත.	එකලිත පද්ධතියක් තුළ සිදු වන ක්‍රියාවලියක් පිටත සිට වෙනස් කළ නොහැක.
47.	තෙල් හා මේද සමග $NaOH$ හෝ KOH ප්‍රතිත්ව්‍යාවෙන් සැදෙන මේද අම්ලවල සෝඩියම් හෝ පොටුසියම් ලවණ, බහුල ලෙස හාවිත වන සඛන් වල අවංග වේ.	ජලය $NaOH$ හෝ KOH සමග එස්ටරයක් ප්‍රතිත්ව්‍යාවෙන් කාබොක්සිලික් අම්ලයේ සෝඩියම් හෝ පොටුසියම් ලවණය හා මදාසාරය ලැබේ.
48.	C_6H_5OH සැදීමට $NaOH$ සමග C_6H_5Br පහසුවෙන් ප්‍රතිත්ව්‍යා නොකරයි.	ගිනයිල් කාබොක්ටායනය ඉතා ස්ථායි වේ.
49.	දුඩල අම්ලයක ජලිය ප්‍රව්‍යනයක් තනුක කරන විට විස්වනය වූ අම්ල අණුවල හාගය හා මාධ්‍යයේ pH අගය යන දෙකම වැඩි වේ.	දුඩල අම්ල අණුවල විස්වනය සිදු වන්නේ අම්ල විස්වන තියනය K_2O තියනව පවතින පරිදි ය.
50.	සුර්යාලෝකය ඇති විට හරින ගාක තුළ CO_2 තිර වේ.	වායුගෝලයේ CO_2 මට්ටම ඉහළ යාම හරින ගාක මගින් පාලනය කළ නොහැක.

* * *

ආචාර්තික වගුව

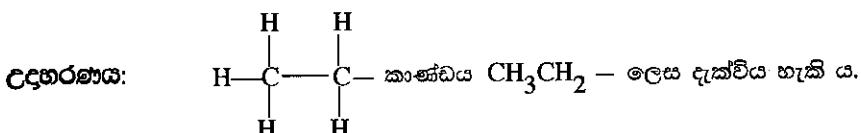
	1	H													2	He		
1	3	4													10			
2	Li	Be													Ne			
3	11	12													18			
4	Na	Mg													Cl	Ar		
5	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
6	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
7	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
8	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
9	55	56	La	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
10	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
11	87	88	Ac	104	105	106	107	108	109	110	111	112	113	...				
12	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

உடல்தன போடு கல்லூரிக் கால (உடல்தன போடு) வினாக்கல், 2018 முன்வர்த்தா கல்லூரி பொதுத் துறையுட் மந்திரி (உயர் துறை)ப் பரிசு செ, 2018 ஒக்டோபர் General Certificate of Education (Adv. Level) Examination, August 2018

රකායන විද්‍යාව	II
இரசாயனவியல்	II
Chemistry	II

02 S II


2018.08.17 / 0830 - 1140

ରାତ୍ରି ରୁହାଦି
ମୁଣ୍ଡୁ ମଣିତ୍ତିଯାଲମ୍
Three hours

අමතර කියවේම කාලය	- මිනිත්තු 10 දි
මොලතික බාසිප්ප තොරුම්	- 10 නිමිත්ත්වකൾ
Additional Reading Time	- 10 minutes

අමතර ශිෂ්ටීම් කාලය පූජා පැවුර වියට පූජ්‍ය තේරු ගැනීමෙන් පිළිබඳ මිලිමැට් පුමුවත්වය දෙන පූජ්‍ය සංවිධානය විරු ගැනීමෙන් වෙශ්‍යාලෝත්තු.

- * ආචාර්තිනා වගුවක් 16 වැනි පිටුවෙහි සාපයා ඇතු.
 - * ගොඩ සේතු ආචාර්තිව ඉඩ දෙනු නොලැබේ.
 - * සාර්වත්‍ර වායු නියතය, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$
 - * ඇවශාඩිරේ නියතය, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$
 - * මෙම ප්‍රෝනා ප්‍රාග්ධන පිළිතුරු සැපයීමේ දී ඇල්කයිල් කාල්ඩ් සංක්මිත්ත ආකාරයකින් නිර්පෙළය කළ භැංකි ය.

□ A කොටස - ව්‍යුහගත් රට්තා (පිටු 2 - 8)

- * සිංහල ම ප්‍රශ්නවලට මෙම ප්‍රශ්න පත්‍රයේ ම පිළිකුරු සපයයෙන්න.
 - * මත්ති පිළිකුරු එක් එක් ප්‍රශ්නයට ඉඩ සලසා ඇති කැන්වල ලිවිය යුතු ය. මේ ඉඩ ප්‍රමාණය පිළිකුරු ලිඛිතව ප්‍රමාණවත් බව ද දිරිස පිළිකුරු බලාපොරොත්තු තොවන බව ද සලකන්න.

□ B කොටස සහ C කොටස - රෙඛන (පිටු 9 - 15)

- * එක් එක් කොටසින් ප්‍රශ්න දේශ බැහින් තෝරා ගනිමින් ප්‍රශ්න හතරකට පිළිතුරු සපයන්න. මේ සඳහා සපයනු ලබන කඩායි භාවිත කරන්න.
 - * සිෂ්පුරුණ ප්‍රශ්න පත්‍රයට නියමිත කාලය අවසන් වූ පසු A, B සහ C කොටස් තුනට පිළිතුරු, A කොටස මූලින් තිබෙන පරිදි එක් පිළිතුරු පත්‍රයක් වන සේ අමුණා විහාර ගාලාධිපතිට භාර දෙන්න.
 - * ප්‍රශ්න පත්‍රයකි B සහ C කොටස් පමණක් විහාර ගාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරිත්‍යාතවරුන්ගේ පෙශේරත්ත සඳහා පමණි

ද්‍රව්‍යකාන්ත ලක්ෂණ

කොටස	ප්‍රේරණ අංකය	ලැබු ලදානු
A	1	
	2	
	3	
	4	
B	5	
	6	
	7	
C	8	
	9	
	10	
එකතුව		
ප්‍රතිශ්‍යාය		

ඉලක්කමෙන්	
අකුරින්	

සංඛෝත්ත දිංත

උත්තර පත්‍ර පරික්ෂක 1	
උත්තර පත්‍ර පරික්ෂක 2	
පරික්ෂා කළේ :	
අධික්ෂණය කළේ :	

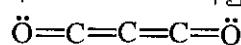
ଫେବ୍ରୁଆରୀ ୨୦୧୦

A කොටස - ව්‍යුහගත් රට්තා

ප්‍රශ්න සතරට ම මෙම පත්‍රයේ ම පිළිතුරු සපයන්න. (එක් එක් ප්‍රශ්නය සඳහා නියමිත ලකුණු ප්‍රමාණය 10 කි.)

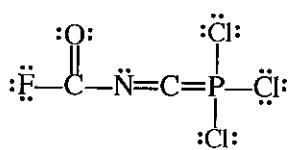
ප්‍රශ්න
සතරට
ම මෙම
පත්‍රයේ
ම පිළිතුරු
සපයන්
නියමිත
ලකුණු
ප්‍රමාණය
10 කි.)

1. (a) පහත සඳහන් ප්‍රකාශ සත්‍ය ද නැතහැන් අයතිභ ද යන බව සඳහන් කරන්න. (හේතු අවශ්‍ය නැත.)

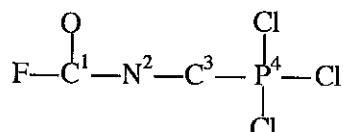

- (i) විශාලත්වය වැඩිවිමත් සමඟ හේලයිඩ් අයනවල ඉව්‍යුත් පිළිතුරු වැඩි වේ.
- (ii) NO_2^- සි $\text{O}-\text{N}-\text{O}$ බන්ධන කෝෂය NO_2^- සි එම කෝෂයට වඩා විශාල වේ.
- (iii) CCl_4 අණු අතර ලන්ඩ් අපකිරණ බල SO_3 අණු අතර ලන්ඩ් අපකිරණ බලවලට වඩා කුඩා වේ.
- (iv) HSO_4^- අයනයේ හැඩිය ත්‍රියානති ද්‍රීපිරම්බිකාර වේ.
- (v) පරමාණුවක සියලුම $3d$ පරමාණුක කාක්ෂික (n, l, m_l) $3, 2, 1$ යන ක්ෂේවන්ටම අංකවලින් නිරුපණය වේ.
- (vi) වායුමය පොස්පරස් පරමාණුවකට ඉලෙක්ට්‍රෝනයක් එක් කිරීම තාපදායක ක්‍රියාවලියක් වන අතර වායුමය නයිට්‍රෝන් පරමාණුවක් සඳහා එය තාප අවශ්‍යෙක වේ.

(ලකුණු 2.4 ප)

(b) (i) SF_3N අණුව සඳහා වඩාත් ම පිළිගත හැකි ලුවිස් ව්‍යුහය අදින්න.


(ii) C_3O_2 (කාබන් සඩීමක්සයිඩ්) අණුව සඳහා වඩාත් ම ස්පායි ලුවිස් ව්‍යුහය පහත දක්වා ඇත. මෙම අණුව සඳහා තවත් ලුවිස් ව්‍යුහ (සම්පූරුණු ව්‍යුහ) දෙකක් අදින්න.

(සූ. රු: අත්තා නියමයට අනුකූල නොවන ලුවිස් ව්‍යුහවලට ලකුණු ප්‍රදානය කරනු නොලැබේ.)



(iii) පහත සඳහන් ලුවිස් ව්‍යුහය පදනම් කරගෙන පහත වගුවේ දක්වා ඇති C, N හා P පරමාණුවල

- I. පරමාණුව වටා VSEPR යුගල් II. පරමාණුව වටා ඉලෙක්ට්‍රෝන යුගල් ජ්‍යාමිතිය
III. පරමාණුව වටා හැඩිය IV. පරමාණුවේ මුහුමිකරණය
සඳහන් කරන්න.

පහත දැක්වෙන පරිදි පරමාණු අංකනය කර ඇත.

	C^1	N^2	C^3	P^4
I. VSEPR යුගල්				
II. ඉලෙක්ට්‍රෝන යුගල් ජ්‍යාමිතිය				
III. හැඩිය				
IV. මුහුමිකරණය				

(iv) ඉහත (iii) කොටසෙහි දෙන ලද ලුවිස් ව්‍යුහයෙහි පහත සඳහන් ර බන්ධන සැදීමට සහභාගි වන පරමාණුක/මුදුම්කාක්‍රමික හඳුනාගන්න. (පරමාණුවල අංකනය (iii) කොටසෙහි ආකාරයට වේ.)

- I. $F-C^1$ F C^1
- II. C^1-N^2 C^1 N^2
- III. N^2-C^3 N^2 C^3
- IV. C^3-P^4 C^3 P^4
- V. P^4-Cl P^4 Cl

(v) ඉහත (iii) කොටසෙහි දෙන ලද ලුවිස් ව්‍යුහයෙහි පහත සඳහන් π බන්ධන සැදීමට සහභාගි වන පරමාණුක කාක්‍රමික හඳුනාගන්න. (පරමාණුවල අංකනය (iii) කොටසෙහි ආකාරයට වේ.)

- I. N^2-C^3 N^2 C^3
- II. C^3-P^4 C^3 P^4

(ලක්ෂණ 5.2 ප)

(c) වර්හන් තුළ දක්වා ඇති ගුණය වැඩිවන පිළිවෙළට පහත සඳහන් දැක්සින්න. (හේතු අවශ්‍ය තොවේ.)

(i) B, Na, P, Be, N (පළමුවන අයිඩිකරණ ගක්තිය)

..... < < < <

(ii) NH_3 , $NOCl$, NO_2Cl , NH_4^+ , F_3C-NC (නයිටුප්‍රන්වල විද්‍යුත් සාර්ථකව)

..... < < < <

(iii) පරමාණුවක ඉලෙක්ට්‍රොනවල ක්වාන්ටම් අංක (n, l, m_l, m_s)

$\left(3, 1, 0, -\frac{1}{2}\right), \left(3, 0, 0, +\frac{1}{2}\right), \left(2, 0, 0, +\frac{1}{2}\right), \left(2, 1, +1, +\frac{1}{2}\right), \left(3, 2, -1, +\frac{1}{2}\right)$ (ඉලෙක්ට්‍රොනයේ ගක්තිය)

..... < < < <

(ලක්ෂණ 2.4 ප)

—
100

2. (a) X යනු ආවර්තනා වගුවේ p-ගොනුවේ තුලදුව්‍යයකි. එය ද්වීපරමාණුක වායුවක් ලෙස පවතී. X පුරුල් ඔක්සිකරණ අවස්ථා පරාසයක් පෙන්වුම් කරයි. X හි වඩාත් ම සූලහ හයිඩුයිඩිය Y වේ. Y ජලයෙහි පහසුවෙන් ද්‍රව්‍යය වී භාස්මික දාවණියක් ලබා දෙයි. Y ඔක්සිකාරකයක්, ඔක්සිභාරකයක්, අම්ලයක් සහ හස්මයක් ලෙස ක්‍රියා කරයි. Y නිෂ්පාදනයේදී X හි ද්වීපරමාණුක වායුව භාවිත වේ.

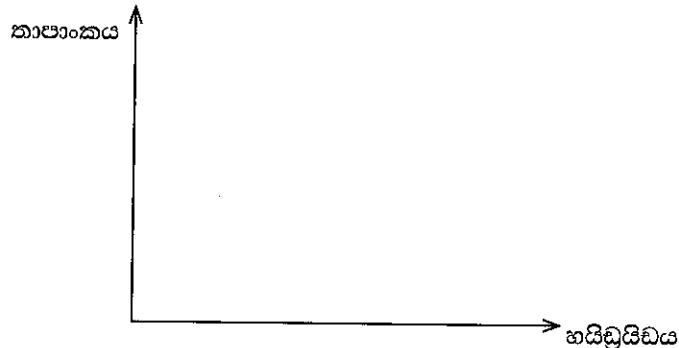
(i) X සහ Y හඳුනාගන්න.

X = Y =

(ii) X හි ද්වීපරමාණුක වායුව සාමාන්‍යයෙන් නිෂ්ප්‍රිය යැයි සලකනු ලැබේ. කෙටියෙන් පහදන්නා.

.....
.....
.....

(iii) X හි ඔක්සයිඩි තුනක රසායනික සූත්‍ර ලියා එම එක් එක් සංයෝගයේ X හි ඔක්සිකරණ අවස්ථාව දක්වන්න.


.....
.....
.....

(iv) පහත සඳහන් එක් එක් අවස්ථාවේදී Y හි ක්‍රියාකාරීන්වය පෙන්වුම් කිරීම සඳහා තුළින රසායනික සාම්කරණය බැහැන් දෙන්න.

I. Y ඔක්සිකාරකයක් ලෙස

II. Y ඔක්සිභාරකයක් ලෙස

- (v) X අඩංගු කාණ්ඩයේ මූලදුව්‍යවල Y ට අනුරුප හයිඩුයිඩ් සලකන්න. මෙම හයිඩුයිඩ්වල (Y ද ඇතුළත්) තාපාංක විවෘතය වන ආකාරයේ දළ සටහනක් පහත ප්‍රස්ථාරයේ දක්වන්න. ඔබගේ දළ සටහනේ හයිඩුයිඩ්, ඒවායේ රසායනික සූත්‍ර හාවිතයෙන් පෙන්වුම් කරන්න.
- (ස. ගු.: තාපාංකවල අගයයන් අවශ්‍ය නැත.)

- (vi) ඉහත (v) කොටසේහි තාපාංකවල විවෘතයට හේතු දක්වන්න.
-
-
-
-
-

- (vii) I. Y හි ජලීය උවණ්‍යකින් වැඩිපුර ප්‍රමාණයක් $\text{Al}_2(\text{SO}_4)_3$ උවණ්‍යකට එක් කළ විට ඔබ කුමක් නිරික්ෂණය කරන්නේ දැයි ලියන්න.
-

- II. ඉහත I කොටසේහි ඔබගේ නිරික්ෂණයට හේතු කාරක වන විශේෂයෙහි රසායනික සූත්‍රය ලියන්න.
-

- (viii) Y හඳුනාගැනීමට එක් රසායනික පරික්ෂාවක් දෙන්න.

පරික්ෂාව:

නිරික්ෂණය:

- (ix) Z යුතු X හි ඔක්සො-අම්ලයක් හා ප්‍රබල ඔක්සිකාරකයකි.

I. Z හඳුනාගන්න.

II. සල්ංර් සමග උණු සාන්ද Z ප්‍රතිත්‍රිය කළ විට ලැබෙන එල සඳහන් කරන්න.

.....

(ලෙඛන 6.0 පි)

- (b) A හා B යුතු ආවර්තනිකා වයුවේ එකම කාණ්ඩයට අයත් p - ගොනුවේ මූලදුව්‍ය දෙකක සංයෝග වේ. කාමර උෂේණිවයේ දී හා වායුගෝලීය පිඩිනයේ දී අවර්ණ, ගදක් තොමැනි ද්‍රවයක් ලෙස A පවතී. එය වායු හා සහ අවස්ථාවන්හි ද දක්නට ලැබේ. A හි සහ අවස්ථාව එහි ද්‍රව අවස්ථාවට විභා සනාත්වයෙන් අඩු වේ. අයනික හා මූලීය සංයෝග පහසුවෙන් A හි ද්‍රවණය වේ.

කාමර උෂේණිවයේ දී හා වායුගෝලීය පිඩිනයේ දී B අවර්ණ වායුවක් වේ. ලෙසි ඇසිවේට්වලින් තෙන් කරන ලද පෙරහන් කඩාසියක් B මගින් පිරියම් කළ විට කළ පැහැයට හැරේ.

- (i) A හා B හඳුනාගන්න.

A = B =

(ii) අවශ්‍ය ස්ථානවල එකසර ඉලෙක්ට්‍රෝන යුගල් පෙන්වා A හා B හි නැඩවල දළ සටහන් අදින්න.

(iii) වඩා විශාල බන්ධන කෝණය ඇත්තේ A ට ද B ට ද යන්න හේතු දක්වමින් සඳහන් කරන්න.

.....

.....

.....

(iv) පහත සඳහන් එක් එක් අවස්ථාවේ දී A හි ස්කියාකාරිත්වය පෙන්වුම් කිරීම සඳහා තුළින රසායනික සමිකරණය බැඳින් දෙන්න.

I. A අම්ලයක් ලෙස :

II. A හස්මයක් ලෙස :

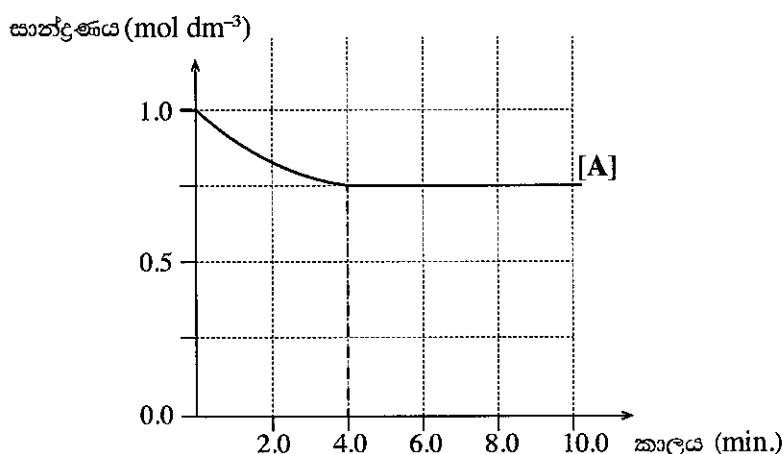
(v) ජලීය ලෙඩි ඇසිවේට සමග B හි ප්‍රතික්‍රියාව සඳහා තුළින රසායනික සමිකරණය ලියන්න.

.....

(vi) I. A හා B වෙත වෙනම ආම්ලිකාත BiCl₃ ආවණයකට එක් කළ විට ඔබ කුමක් නිරීක්ෂණය කරන්නේ දැයු ලියන්න.

A (වැඩිපුර) සමග: B සමග:

II. ඉහත I කොටසෙහි ඔබගේ නිරීක්ෂණ සඳහා තුළින රසායනික සමිකරණ ලියන්න.


.....

.....

100

(ලකුණ 4.0 නි.)

3. $A + B \rightleftharpoons 2C + D$ (දෙදියාවටම මූලික ප්‍රතික්‍රියා වේ.) යන ප්‍රතික්‍රියාව 25 °C සි දී සිදුකරන ලදී. ආරම්භයේ දී A, 0.10 mol හා B, 0.10 mol ආසුනු ජලයෙහි ද්‍රවණය කිරීමෙන් (මුළු පරිමාව 100.00 cm³) ප්‍රතික්‍රියා මිගුණය සාදන ලදී. කාලය සමග මෙම ද්‍රවණයෙහි A හි සාන්දුණයෙහි වෙනස් වීම ප්‍රස්ථාරයෙහි දක්වා ඇත.

(i) ප්‍රතික්‍රියාවේ පළමු මිනින්තු 4.0 තුළ දී ප්‍රතික්‍රියා කරන ලද A ප්‍රමාණය (මුළුවලින්) ගණනය කරන්න.

.....

.....

- (ii) මිනිත්තු 4.0 ට පසු ඉදිරි ප්‍රතික්‍රියාවෙහි සිසුතාව පසු ප්‍රතික්‍රියාවෙහි සිසුතාවට වඩා අඩු වේ ද? ඔබගේ පිළිබඳ පැහැදිලි කරන්න.

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

- (iii) ඉදිරි ප්‍රතික්‍රියාවෙහි සිසුතා නියතය (k_{forward}) $18.57 \text{ mol}^{-1} \text{ dm}^3 \text{ min}^{-1}$ බව දී ඇත් නම්, ඉදිරි ප්‍රතික්‍රියාවෙහි ආරම්භක සිසුතාව ගණනය කරන්න.

.....

.....

.....

.....

.....

.....

.....

.....

.....

- (iv) සමතුලිතතාවයේ දී **C** හා **D** හි සාන්දුන් ගණනය කරන්න.

කාලය සමඟ **C** හා **D** වල සාන්දුන්යන්හි වෙනාස් වීම දක්වන අදාළ වතු ඉහත ප්‍රස්ථාරයෙහි අදාළ එවා නම් කරන්න.

.....

.....

.....

.....

.....

.....

.....

.....

- (v) ඉහත ප්‍රතික්‍රියාවෙහි සමතුලිතතා නියතය K_C සඳහා ප්‍රකාශනය ලියා එහි අගය ගණනය කරන්න.

.....

.....

.....

.....

.....

.....

.....

.....

- (vi) පසු ප්‍රතික්‍රියාව සඳහා සිසුතා නියතයෙහි (k_{reverse}) අගය ගණනය කරන්න.

.....

.....

.....

.....

.....

.....

.....

.....

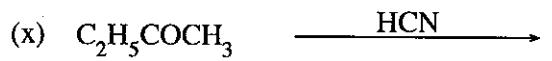
- (vii) සමතුලිතකාවට එළැකී පසු, ආපුරුතු ජලය 100.00 cm^3 එකතු කිරීමෙන් දාවනයෙහි පරිමාව දෙගුණ කරන ලදී. දාවනයෙහි පරිමාව දෙගුණ කළ විගස සමස්ත ප්‍රතික්‍රියාවෙහි දිගාව, පුදුපු ගණනය කිරීමක් මගින් පූර්ණ කරන්න.
-
.....
.....
.....
.....
.....

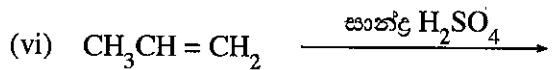
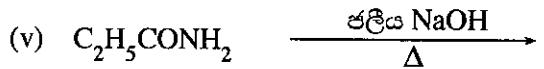
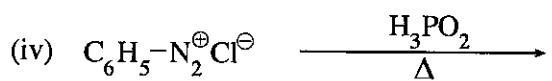
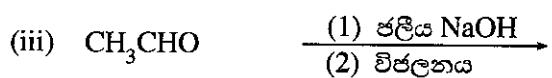
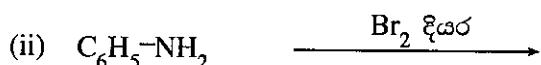
- (viii) ඉහත පරීක්ෂණය 25°C ට අඩු උෂ්ණත්වයක දී සිදු කළේ යැයි සලකන්න. මෙය පසු ප්‍රතික්‍රියාවෙහි සිංහාව කෙරෙහි බලපාන්නේ කෙසේ දී ඔබගේ පිළිතුර හේතු දක්වමින් පහදන්න.
-
.....
.....
.....
.....

100

(ලක්ෂණ 10.0 ඩ.)

4. (a) (i) $\text{C}_5\text{H}_{10}\text{O}$ අණුක පුත්‍රය සහිත A, B සහ C යන සංයෝග එකිනෙකෙහි වුයා සමාවයවික වේ. සංයෝග තුනම 2,4-DNP සමග කහ-තැයිලි අවක්ෂේප ලබා දේ. ඉන් එකක්වන් රිදී කැටපත් පරීක්ෂණවේදී රිදී කැටපතක් නොදේ. A, B සහ C වෙන වෙනම NaBH_4 සමග ප්‍රතික්‍රියා කරවූ විට පිළිවෙළින් D, E සහ F යන සංයෝග ලබා දුනි. E සහ F පමණක් ප්‍රකාශ සමාවයවිකතාව පෙන්වයි. B සහ C වෙන වෙනම $\text{CH}_3\text{CH}_2\text{CH}_2\text{MgBr}$ සමග ප්‍රතික්‍රියා කරවා, ඉන්පසු ජලවිවිශේදනය කළ විට පිළිවෙළින් G සහ H යන සංයෝග ලබා දුනි. G පමණක් ප්‍රකාශ සමාවයවිකතාව පෙන්වුම් කරයි. A, B, C, D, E, F, G සහ H වල වුයා පහත දී ඇති කොටුතුල අදින්න. (ත්‍රිමාන සමාවයවික ආකාර පෙන්වීම අවශ්‍ය නැත.)








ABCDEFGH

- (ii) පහත සඳහන් ප්‍රතික්‍රියාවේ එළයේ වුයාහය අදින්න.

A $\xrightarrow{(1) \text{ 2,4-DNP}}$
 $\xrightarrow{(2) \text{ විශ්ලනය}}$

(ලක්ෂණ 4.5 ඩ.)

(b) පහත දී ඇති එක් එක් ප්‍රතික්‍රියාවේ ප්‍රධාන කාබනික එලෙක්ටි ව්‍යුහය අදින්න.

(ලක්ෂ 3.5 පි)

(c) ආලේකය හමුවේ දී CH_4 සමඟ Cl_2 ප්‍රතික්‍රියාවේ එක් එලයක් CH_3Cl වේ. CH_3Cl සැදෙන ආකාරය පෙන්වන ප්‍රතික්‍රියාවේ යන්තුණේයේ පියවර ලියන්න. ඉලෙක්ට්‍රොන සංතුමණය විනු රිතල/වතු අර්ථ රිතල (↑/↖) මගින් දක්වන්න.

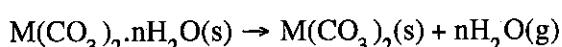
100

(ලක්ෂ 2.0 පි)

Department of Examinations, Sri Lanka

රකායන විද්‍යාව	II
இரசாயனவியல்	II
Chemistry	II

02 S II


$$* \text{ සාර්වත්‍රික වායු නියතය } R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$$

* අග්‍රාධිරෝ නියතය $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

B. ଶ୍ରୀରାମ - ରମ୍ଯା

සායුජ්‍ය තෙක්නොලගිස් සිලිනරු සුප්‍යත්තු. (ඒත් ඒත් ප්‍රශ්නයට ලක්ශ්‍ර 15 බැංකින් ලැබේ.)

5. (a) පහත සඳහන් පතිකියා සලකන්න.

පරිමාව 0.08314 m^3 වූ රේවනය කරන ලද දායි බදුනක $\text{M}(\text{CO}_3)_2 \cdot \text{nH}_2\text{O}(\text{s})$ සුළු ප්‍රමාණයක් (0.10 mol) ඇති. බදුනේ උෂ්ණත්වය 400 K දක්වා වැඩි කරන ලදී. මෙම උෂ්ණත්වයේ දී $\text{M}(\text{CO}_3)_2$ ලෝහ කාබනෝටය වියෝජනය නොවන නළුම් ස්ථානිකරණය වූ ජලය සම්පූර්ණයෙන් වාෂ්පිකරණය වේ. බදුනෙහි පිඩිනය $1.60 \times 10^4\text{ Pa}$ බව මැනා ගන්නා ලදී. සන ද්‍රව්‍ය මෙින් අයත් කරගෙන්නා පරිමාව නොපළකා හැරිය හැකි වේ.

$M(CO_3)_2 \cdot nH_2O(s)$ සූත්‍රයෙහි 'n' හි අගය තිරණය කරන්න.

(කොරු 2.0 ති.)

(b) ඉහත පදනම්වෙනි උෂ්ණත්වය ඉන්පසු 800 K දක්වා වැඩි කරන ලදී. මෙවිට සන ලේඛ කාබනෝටයෙන් යම් ප්‍රමාණයක් වියෝගනාය වී වායු කළාපය සමඟ සමතුලිකව ඇති බව තිරික්ෂණය කරන ලදී. බුදුනෙහි පීඩනය $4.20 \times 10^4 \text{ Pa}$ බව මැන්දන්නා ලදී.

(i) 800 K හි ඇත්තා තුළ ඇති ජලවාෂ්පයෙහි ආංකික පිඩිනය ගණනය කරන්න.

(ii) 800 K තිස් බෙදාහැනු තුළ ඇති CO_2 හි ප්‍රාග්ධන පිබනය ගණනය කරන්න.

(iii) $M(CO_3)_2(s)$ හි වියෝගනයට අදාළ පිවින සමතුලිතතා නියතය, K_p සඳහා ප්‍රකාශනයක් ලියන්න. 800 K තිස් K_p ගණනය කරන්න.

(iv) 800 K ති හේතුව කාබනෝටයෙහි වියෝජනය වි මිලි ප්‍රතිඵලය ගණනය කරන්න.

(v) ඉහත තත්ත්ව යටතේ ලේඛ කාබනෝටයෙහි වියෝජනය වේ. අනුරුප එන්ටෝපි වෙනස (ΔS) ගණනය කරන්න.

(vi) $M(CO_3)_2(s)$ හි වියෙන්තන ප්‍රතිකිරියාව ඉහිරි දිගාවට යොමු කිරීම සඳහා ක්‍රම දෙකක් යොන්න.

(କେତେ 6.5 ମ.)

(කොණු 6.5 අ.)

(c) කාප රසායනික ව්‍යුතු හා විදුලිවේසි දී ඇති දත්ත ආධාරයෙන් පහත සඳහන් ප්‍රෝන්වලට පිළිකුරු සපයයන්න.

විශේෂය	සම්මත උත්පාදන එන්තැල්පිය (ΔH_f°) (kJ mol ⁻¹)
M(s)	0.0
M(g)	800.0
O ₂ (g)	0.0
O(g)	249.2
MO ₂ (g)	-400.0

(i) $MO(g) + \frac{1}{2} O_2(g) \rightarrow MO_2(g) \quad \Delta H^\circ = -50.0 \text{ kJ mol}^{-1}$ බව දී ඇත්තම් $MO(g)$ හි සම්මත උත්පාදන සීන්සුර්ස් තුළ ගැනීමයි. කුරුණු තුළ.

(ii) $MO(g)$ හි $M-O$ බැන්ධන විසංච්‍රිත එන්තැල්පිය ගණනය කරන්න.

- (iii) $MO_2(g)$ සි $M-O$ බන්ධන විස්වන එන්තැල්පිය ගණනය කරන්න.
- (iv) සම්මත තත්ත්ව යටතේ දී හා 2000 K සි දී $MO_2(g) \rightarrow MO(g) + \frac{1}{2} O_2(g)$ ප්‍රතික්‍රියාව ස්වයාසිද්ධ වේ දැයි ප්‍රුදු ගණනය කිරීමක් මගින් ප්‍රථමකරිතය කරන්න. මෙම ප්‍රතික්‍රියාවෙහි සම්මත එන්ලේපි වෙනස $30.0\text{ J K}^{-1}\text{ mol}^{-1}$ වේ. (කොනු 6.5 සි.)

6. (a) අමිශු ද්‍රව පද්ධතියක් සාදන ජලය (A) හා කාබනික දාවකයක් (B) අතර, අයවින් (I_2) සි ව්‍යාප්ති සංග්‍රහකය නිර්ණය කිරීම සඳහා පරීක්ෂණයක් සිදු කරන ලදී.

I_2 මුවල 'n' සංඛ්‍යාවක් අඩංගු B සි 20.00 cm^3 සමඟ A සි 20.00 cm^3 මිශ්‍ර කර කාමර උෂ්ණත්වයේ දී සම්බුද්ධතාවයට එළැඳීමට ඉඩහරින ලදී.

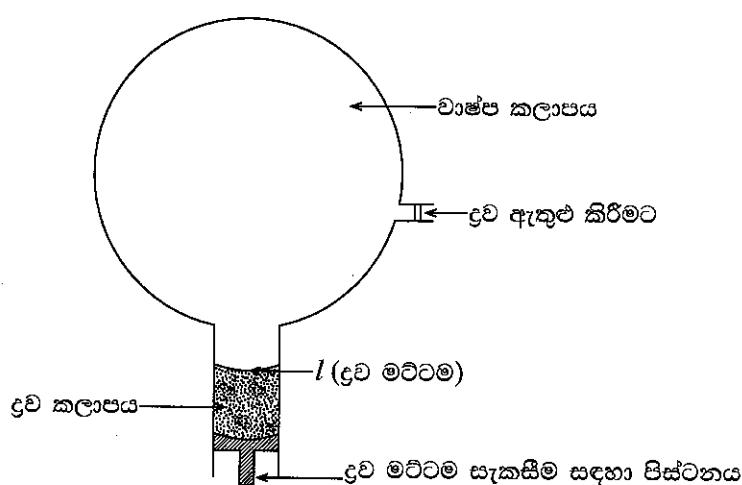
A කළාපයෙන් 5.00 cm^3 තියැදියක් ඉවත් කර එය 0.005 mol dm^{-3} $Na_2S_2O_3$ දාවකයක් සමඟ අනුමාපනය කිරීමෙන් A කළාපයේ I_2 සාන්දුණය නිර්ණය කරන ලදී. අන්ත ලක්ෂාය ලබා ගැනීමට අවශ්‍ය වූ $Na_2S_2O_3$ පරිමාව 22.00 cm^3 විය. B කළාපයෙහි I_2 සාන්දුණය 0.040 mol dm^{-3} බව නිර්ණය කරන ලදී.

(i) $Na_2S_2O_3$ හා I_2 අතර ප්‍රතික්‍රියාව සඳහා තුළින රසායනික සැමිකරණය ලියන්න.

(ii) A කළාපයෙහි I_2 සාන්දුණය ගණනය කරන්න.

(iii) ව්‍යාප්ති සංග්‍රහකය K_D සි අයය ගණනය කරන්න. $K_D = \frac{[I_2]_B}{[I_2]_A}$ වේ.

(iv) A හා B කළාප දෙකෙහි ඇති මුළු I_2 මුවල ප්‍රමාණය ගණනය කරන්න. (කොනු 4.5 සි.)

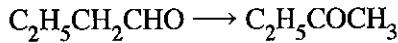

- (b) A කළාපයට I^- අයන එකතු කර, ඉහත පරීක්ෂණය එම තත්ත්ව යටතේ දී ම එනම් එම උෂ්ණත්වයේ දී හා එම I_2 ප්‍රමාණය හා එම පරිමාවන් භාවිතයෙන් නැවත සිදු කරන ලදී. පද්ධතිය හොඳින් කළාප සම්බුද්ධතාවයට එළැඳීමට ඉඩ හරින ලදී. A කළාපයෙහි 5.00 cm^3 තියැදියක ඇති I_2 අනුමාපනය කිරීම සඳහා අවශ්‍ය වූ 0.005 mol dm^{-3} $Na_2S_2O_3$ දාවණ පරිමාව 41.00 cm^3 විය. මෙවිට B කළාපයෙහි I_2 සාන්දුණය 0.030 mol dm^{-3} බව නිර්ණය කරන ලදී.

(i) A හා B කළාප අතර I_2 සි ව්‍යාප්තිය සඳහා ව්‍යාප්ති සංග්‍රහකය පදනම් කර ගනිමින් A කළාපයෙහි 5.00 cm^3 සි තිවිය යුතු යැයි බලාපොරොත්තු වන I_2 ප්‍රමාණය (මුවල) ගණනය කරන්න.

(ii) ඉහත අනුමාපනයේ දී $Na_2S_2O_3$ සමඟ ප්‍රතික්‍රියා කරන ලද I_2 ප්‍රමාණය (මුවල) ගණනය කරන්න.

(iii) ඉහත (b) (i) හා (b) (ii) කොටස් සඳහා ලබාගත් පිළිතුරු එකිනෙකින් වෙනස් වන්නේ මත්දුසි A කළාපයෙහි ඇති විවිධ අයවින් විශේෂ සලකම්න් පැහැදිලි කරන්න. (කොනු 3.5 සි.)

- (c) X හා Y යන ද්‍රව රාෂ්‍ය නියමය අනුගමනය කරන පරිපූර්ණ දාවකයක් සාදයි.

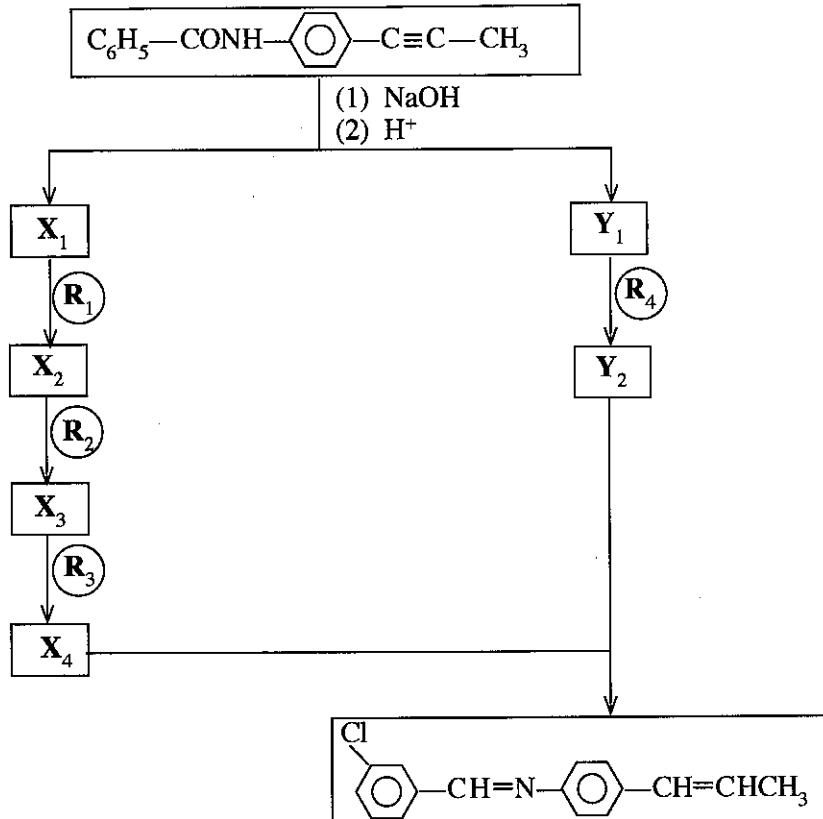

රුපයේ පෙන්වා ඇති පරිදි රේවනය කරන ලද දැඩි බෙදානකට මුළුන් X ද්‍රවය පමණක් ඇතුළු කරන ලදී. ද්‍රව මට්ටම l සි ප්‍රවත්වා ගනිමින් පද්ධතිය 400 K සි දී සම්බුද්ධතාවයට එළැඳීමට ඉඩ හරින ලදී. බෙදානකි පිවිනය $3.00 \times 10^4\text{ Pa}$ ලෙස මැනා ගන්නා ලදී. ද්‍රව මට්ටම l සි ඇති විට ව්‍යාප්ත කළාපයේ පරිමාව 4.157 dm^3 විය.

ඉන් පසු Y ද්‍රවය බෙදාන තුළට ඇතුළු කර X ද්‍රවය සමඟ මිශ්‍ර කර පද්ධතිය 400 K සි දී සම්බුද්ධතාවයට එළැඳීමට ඉඩ හරින ලදී. ද්‍රව මට්ටම l සි ප්‍රවත්වා ගන්නා ලදී. ද්‍රව කළාපයෙහි X:Y මුවල අනුපාතය $1:3$ බව සොයාගන්නා ලදී. බෙදානෙහි පිවිනය $5.00 \times 10^4\text{ Pa}$ බව මැනාගන්නා ලදී.

- (i) 400 K හි දී X හි සන්නාප්ත වාෂ්ප පිඩිනය කුමක් වේ දී?
- (ii) සමතුලිතතාවයේ දී ද්‍රව කළාපයේ X හා Y හි මුළු භාග ගණනය කරන්න.
- (iii) Y එකතු කළ පසු සමතුලිතතාවයේ දී X හි ආංඩික පිඩිනය ගණනය කරන්න.
- (iv) සමතුලිතතාවයේ දී Y හි ආංඩික පිඩිනය ගණනය කරන්න.
- (v) Y හි සන්නාප්ත වාෂ්ප පිඩිනය ගණනය කරන්න.
- (vi) වාෂ්ප කළාපයෙහි ඇති X හා Y හි ප්‍රමාණ (මුළුවලුදින්) ගණනය කරන්න.
- (vii) X හා Y ද්‍රව මිශ්‍රණයක් භාංඩා ආසවනයට භාජනය කළ විට භාංඩා ආසවන කුළුණින් කුමන සංයෝගය මුදින් ආසවනය වි පිට වේ දැයි සඳහන් කරන්න. ඔබගේ පිළිබුරට හේතු දක්වන්න.

(ලක්ෂණ 7.0 ඩ.)

7. (a) ලැයිස්තුවේ දී ඇති රසායන ද්‍රව්‍ය පමණක් භාවිත කර ඔබ පහත සඳහන් පරිවර්තනය සිදු කරන්නේ කෙසේ දැයි පෙන්වන්න.


රුක්ක ද්‍රව්‍ය ලැයිස්තුව

ජලීය NaOH, HBr, මද්‍යසාරීය KOH, NaBH₄, H⁺/KMnO₄

මධ්‍යග්‍රහණ පියවර 7 කට වඩා වැඩි තොටිය යුතු ය.

(ලක්ෂණ 6.0 ඩ.)

- (b) පහත සඳහන් ප්‍රතික්‍රියා පටිපාටිය සම්පූර්ණ කිරීම සඳහා R₁—R₄ සහ X₁—X₄ සහ Y₁, Y₂ හඳුනාගන්න.

- (c) (i) පහත සඳහන් ප්‍රතික්‍රියාවේ යන්ත්‍රණය දෙන්න.

(ලක්ෂණ 6.0 ඩ.)

- (ii) ඉහත සඳහන් ප්‍රතික්‍රියාව නාජ්‍රීකාම් (nucleophilic) ආදේශ ප්‍රතික්‍රියාවක් ද නැතහොත් ඉලෙක්ට්‍රොනිකාම් (electrophilic) ආදේශ ප්‍රතික්‍රියාවක් ද යන්න සඳහන් කරන්න. අදාළ පරිදි තියුක්ලියෝගයිලය හෝ ඉලෙක්ට්‍රොනිකිලය හඳුනාගන්න.

- (iii) පිනෝල් (C₆H₅OH) සහ එතනොල් (C₂H₅OH) යන සංයෝග දෙක අතරින් වඩා ආම්ලික වන්නේ කුමක් දැයි හේතු දක්වමින් සඳහන් කරන්න.

(ලක්ෂණ 3.0 ඩ.)

C කොටස — රට්‍යා

ප්‍රශ්න දෙකකට පමණක් පිළිතුරු සපයන්න. (එක් එක් ප්‍රශ්නයට ලකුණු 15 බැංකින් ලැබේ.)

8. (a) P නම් ජලීය දාවණයක කැටායන දෙකක් හා ඇනායන දෙකක් අඩංගු වේ. මෙම කැටායන හා ඇනායන හඳුනාගැනීම සඳහා පහත සඳහන් පරික්ෂණ සිදු කරන ලදී.

කැටායන

පරික්ෂණය	තිරික්ෂණය
① තනුක HCl මගින් P ආම්ලිකාත කර දාවණය කුළින් H_2S බුබුලනය කරන ලදී.	පැහැදිලි දාවණයක් ලැබුණි.
② H_2S සියල්ල ම ඉවත් වන තුරු ඉහත දාවණය නටවන ලදී. සාන්ද HNO_3 ඩිලු කිහිපයක් එකතු කර දාවණය ක්‍රියාත්වන් රන් කරන ලදී. ලැබුණු දාවණය සියල් කර, $(NH_4)_2CO_3$ එකතු කරන ලදී.	දුනුරු පැහැති අවක්ෂේපයක් (Q) සැදුණි.
③ Q පෙර ඉවත් කර පෙරනය කුළින් H_2S බුබුලනය කරන ලදී.	ලා-රෝස පැහැති අවක්ෂේපයක් (R) සැදුණි.
④ R පෙර ඉවත් කර H_2S සියල්ල ම ඉවත් වන තුරු පෙරනය නටවන ලදී. දාවණයට $(NH_4)_2CO_3$ එකතු කරන ලදී.	පැහැදිලි දාවණයක් ලැබුණි.
⑤ P හි අලුත් කොටසකට තනුක NaOH එකතු කරන ලදී.	කැන-කොල පැහැති අවක්ෂේපයක් සහ සුදු අවක්ෂේපයක් සැදුණි.

Q හා R අවක්ෂේප සඳහා පරික්ෂණ:

පරික්ෂණය	තිරික්ෂණය
⑥ තනුක HNO_3 හි Q දාවණය කර, සැලිසිලික් අම්ල දාවණයක් එක් කරන ලදී.	ලා-දම් පැහැති දාවණයක් ලැබුණි.
⑦ තනුක අම්ලයක R දාවණය කර, දාවණයට තනුක NaOH එකතු කරන ලදී.	සුදු පැහැති අවක්ෂේපයක් සැදුණි. කල් තැබීමේ දී එය දුනුරු පැහැයට හැරුණි.

ඇනායන

	පරික්ෂාව	තිරික්ෂණය
⑧ I	$BaCl_2$ දාවණයක් P වලට එකතු කරන ලදී.	සුදු අවක්ෂේපයක් සැදුණි.
II	සුදු අවක්ෂේපය පෙර වෙත් කර අවක්ෂේපයට තනුක HCl එක් කරන ලදී.	සුදු අවක්ෂේපය දාවණය නොවුණි.
⑨	⑧ II හි පෙරනයෙන් කොටසකට Cl_2 දියරය හා ක්ලෝරෝගේම් එකතු කර මිශ්‍රණය නොදින් සොල්වන ලදී.	ක්ලෝරෝගේම් ස්තරය කහ-දුනුරු පැහැයට හැරුණි.

(i) P දාවණයෙහි ඇති කැටායන දෙක හා ඇනායන දෙක හඳුනාගන්න. (හේතු අවශ්‍ය තැවත.)

(ii) Q හා R අවක්ෂේපවල රසායනික සුවු ලියන්න.

(iii) පහත සඳහන් දේවල් සඳහා හේතු දෙන්න:

I. කැටායන සඳහා ② පරික්ෂණයේ දී H_2S ඉවත් කිරීමII. කැටායන සඳහා ② පරික්ෂණයේ දී සාන්ද HNO_3 සමඟ රන් කිරීම

(කෙතු 7.5 පි.)

- (b) ලෙඩි, කොපර් හා නිෂ්ප්‍රිය ද්‍රව්‍යයක් X නියැදියෙහි අඩංගු වේ. X හි ඇති ලෙඩි හා කොපර් විශ්ලේෂණය කිරීම සඳහා පහත ත්‍රියාවලිය සිදු කරන ලදී.

මූල්‍යවලිය

X හි 0.285 g ස්කන්සයක් කනුක HNO_3 මදක් වැඩි ප්‍රමාණයක ද්‍රව්‍යය කරන ලදී. පැහැදිලි දාවණයක් ලැබුණි. ලැබුණු පැහැදිලි දාවණයට NaCl දාවණයක් එක් කරන ලදී. සුදු අවක්ෂේපයක් (Y) සැපුණි. අවක්ෂේපය පෙර වෙන් කර අවක්ෂේපය (Y) හා පෙරනය (Z) වෙන වෙනම විශ්ලේෂණය කරන ලදී.

අවක්ෂේපය (Y)

අවක්ෂේපය උණු ජලයෙහි ද්‍රව්‍යය කරන ලදී. K_2CrO_4 ද්‍රව්‍යයකින් වැඩිපුර එක් කරන ලදී. කහ පැහැදි අවක්ෂේපයක් සැපුණි. අවක්ෂේපය පෙර වෙන් කර කනුක HNO_3 හි ද්‍රව්‍යය කරන ලදී. තැකිලි පැහැදි දාවණයක් ලැබුණි. මෙම දාවණයට වැඩිපුර KI එක් කර, පිටුව I_2 , දරුණය ලෙස පිශ්ටය යොදා, $0.100 \text{ mol dm}^{-3} \text{ Na}_2\text{S}_2\text{O}_3$ සමග අනුමාපනය කරන ලදී. අන්ත ලක්ෂණය ලැබීම සඳහා අවශ්‍ය වූ $\text{Na}_2\text{S}_2\text{O}_3$ පරිමාව 27.00 cm^3 විය. (අනුමාපනයට NO_3^- අයන බාධා තොකරන බව උපකල්පනය කරන්න.)

පෙරනය (Z)

පෙරනය උදාසීන කර එයට වැඩිපුර KI එක් කරන ලදී. පිටුව I_2 , දරුණය ලෙස පිශ්ටය යොදා, $0.100 \text{ mol dm}^{-3} \text{ Na}_2\text{S}_2\text{O}_3$ සමග අනුමාපනය කරන ලදී. අන්ත ලක්ෂණය ලැබීම සඳහා අවශ්‍ය වූ $\text{Na}_2\text{S}_2\text{O}_3$ පරිමාව 15.00 cm^3 විය.

(සැපු: නිෂ්ප්‍රිය ද්‍රව්‍යය කනුක HNO_3 හි ද්‍රව්‍යය වේ යැයි හා එය පරීක්ෂණයට බාධා තොවේ යැයි උපකල්පනය කරන්න.)

(i) X හි අඩංගු ලෙඩි හා කොපර් ස්කන්ස ප්‍රතිගෙන ගණනය කරන්න. අදාළ අවස්ථාවන් හි කුලිත රසායනික සම්කරණ ලියන්න.

(ii) Y අවක්ෂේපය විශ්ලේෂණයේදී කරන අනුමාපනයෙහි අන්ත ලක්ෂණයේදී ලැබෙන වර්ණ විපර්යාසය කුමක්ද?

(Cu = 63.5, Pb = 207)

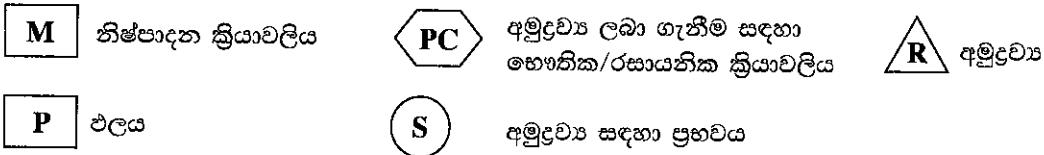
(ලකුණු 7.5 දි.)

9. (a) පහත සඳහන් ප්‍රාග්‍රහණ පරිසරය සහ රුට අදාළ ගැටුවු මත පදනම් වේ.

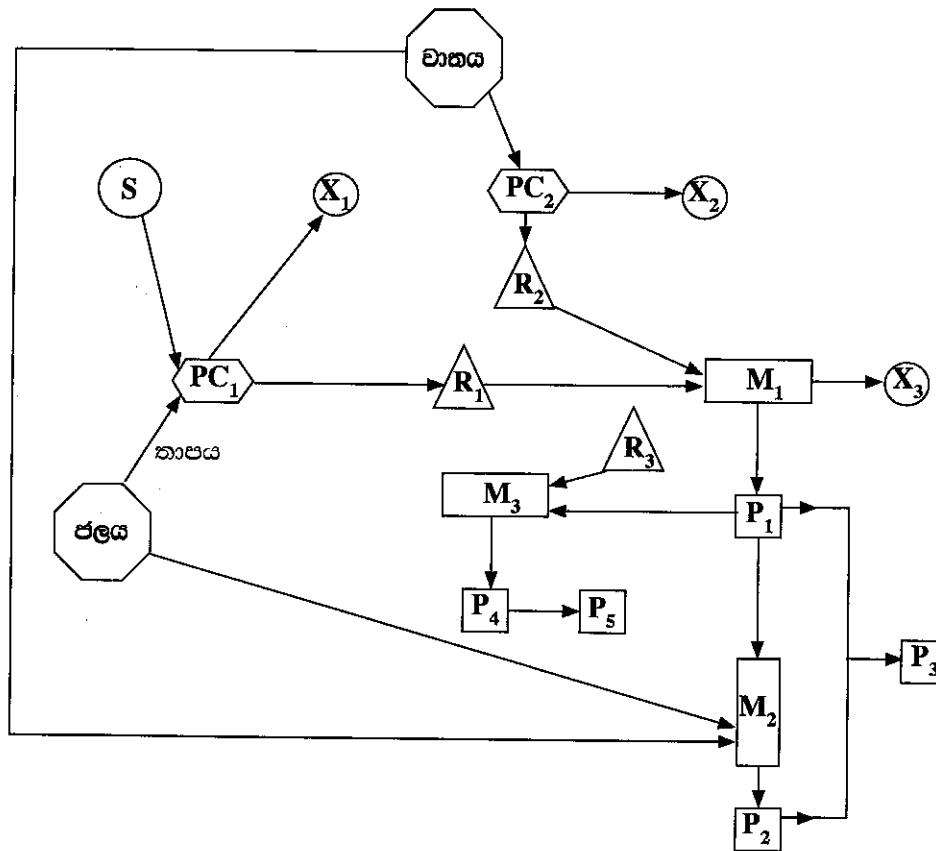
(i) ගෝලිය උණුසුම්කරණයට දායක වන හරිතාගාර වායු තුනක් හඳුනාගන්න. ගෝලිය උණුසුම්කරණය නිසා ඇති වන ප්‍රතිවිපාක දෙකක් සඳහන් කරන්න.

(ii) ගල් අගුරු බලාගාර නිසා ඇති වන ගෝලිය පාරිසරික ගැටුවු හොඳින් ප්‍රකට වේ ඇත. ගෘග සහ ජලය විල සමහර ජල තත්ත්ව පරාමිතියන් වෙනස් වීම සඳහා සැලකිය යුතු ලෙස දායක වන එවැනි එක් ගැටුවුවක් හඳුනාගන්න.

(iii) ඉහත (ii) හි හඳුනාගන්නා ලද පාරිසරික ගැටුවුව සඳහා සේතු වන රසායනික විශ්ලේෂණය නම් කරන්න. මෙම ගැටුවුව නිසා බලපෑමට ලක් විය හැකි ජල තත්ත්ව පරාමිතියන් තුනක් සඳහන් කරන්න.


(iv) වායුගෝලයේ ඕසේන් මට්ටම වෙනස් කරන (වැඩි කරන හෝ අඩු කරන) පාරිසරික ගැටුවු දෙකක් හඳුනාගෙන මෙම වෙනස් වීම සිදුවන්නේ කෙසේ දැයි කුලිත රසායනික සම්කරණ ආධාරයෙන් කෙටියෙන් පැහැදිලි කරන්න.

(v) I. “ලත්ප්‍රේරක පරිවර්තක (catalytic converters) මගින් වාහන පිටාර වායුවෙහි ඇති අහිතකර වායු බහුතරයක්, සාපේක්ෂව අහිතකර බවින් අඩු වායු බවට පරිවර්තනය කරනු ලැබේ.” මෙම ප්‍රකාශය කෙටියෙන් පැහැදිලි කරන්න.


II. උත්ප්‍රේරක පරිවර්තකයක් මගින් අහිතකර බවින් අඩු වායුවක් බවට පරිවර්තනය තොවා ඇත්තේ තුළ නිපදවෙන්නේ කෙසේ දැයි කෙටියෙන් සඳහන් කරන්න.

(ලකුණු 7.5 දි.)

(b) P_1 හා P_2 යන වැදගත් සංයෝග දෙකක් හා එවායින් ව්‍යුත්පන්න කරනු ලබන P_3 , P_4 හා P_5 යන තවත් වැදගත් සංයෝග තුනක් නිපදවන අයුරු පහත දී ඇති ගැලීම් සටහනෙහි දක්වේ. Na_2CO_3 නිෂ්පාදනයේදී P_1 අමුදව්‍යයක් ලෙස හාවත වේ. P_1 හා P_2 අතර ප්‍රතික්‍රියාවන් P_3 නිෂ්පාදනය කළ හැක. P_3 පොහොරක් ලෙස හා ස්ථේරිකයක් ලෙස හාවත වේ. බහුල වශයෙන් හාවත වන පොහොරක් වන P_4 නිෂ්පාදනයේදී දී P_1 හාවත වේ. වැදගත් කාපස්ථාපන බහු අවයවකයක් වන P_5 සංශේල්පණයේදී දී P_4 හාවත වේ.

X ප්‍රතික්‍රියා නොකළ අමුදව්‍යය (අමුදව්‍ය)/
සොතික හා/සොත් රසායනික ක්‍රියාවලියේදී දී
වායුගෝලයට මුදාහැරෙන ද්‍රව්‍ය

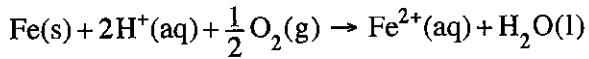
ඉහත ගැලීම් සටහන පදනම් කරගනීම් පහත ප්‍රශ්නවලට පිළිතුරු සපයන්න.

- P_1, P_2, P_3, P_4 හා P_5 හඳුනාගන්න.
- R_1, R_2 හා R_3 හඳුනාගන්න.
- X_1, X_2 හා X_3 හඳුනාගන්න.
- S හඳුනාගන්න.
- අදාළ අවස්ථාවලදී තුළිත රසායනික සම්කරණ දෙමින් PC_1 හා PC_2 හි සිදු වන ක්‍රියාවලි කෙටියෙන් සඳහන් කරන්න.
- M_1, M_2 හා M_3 නිෂ්පාදන ක්‍රියාවලි හඳුනාගන්න. (උදා: ස්ථේරික සුමය හෝ H_2SO_4 නිෂ්පාදනය.)
- M_1, M_2 හා M_3 හි සිදු වන ප්‍රතික්‍රියා සඳහා තුළිත රසායනික සම්කරණ පූදුස් තත්ත්ව සමඟ දෙන්න.
- I. P_1 හා P_2 යන එක් එක් සංයෝගය සඳහා ඉහත සඳහන් කර නොමැති එක් ප්‍රයෝගනයක් බැහිත් දෙන්න.
II. අමුදව්‍යයක් ලෙස හාවත කිරීම හැර, P_1 නිෂ්පාදන ක්‍රියාවලියෙහි R_1 හි එක් ප්‍රයෝගනයක් දෙන්න.

(ලක්ෂණ 7.5 කි.)

10. (a) A හා B යනු අශ්වතලිය ජ්‍යාමිතියක් ඇති සංකීර්ණ අයන (ඒනම්, ලෝහ අයනය හා එයට සංගත වී ඇති ලිගන) වේ. ඒවාට එකම පරමාණුක සංපුත්‍ය වන MnC₅H₃N₆ ඇත. එක් එක් සංකීර්ණ අයනයෙහි ලිගන වර්ග දෙකක් ලෝහ අයනයට සංගත වී ඇත. A අඩංගු ජලිය දාවණයක් පොටැසියම් ලිගනයක් සමඟ පිරියම් කළ විට C සංගත සංයෝගය සැදෙයි. ජලිය දාවණයේ දී C මධින් අයන හතරක් ලැබේ. B අඩංගු ජලිය දාවණයක් පොටැසියම් ලිගනයක් සමඟ පිරියම් කළ විට D සංයා සංයෝගය සැදෙයි. ජලිය දාවණයේ දී D මධින් අයන තුනක් ලැබේ. C හා D දෙකටම අශ්වතලිය ජ්‍යාමිතියක් ඇත.

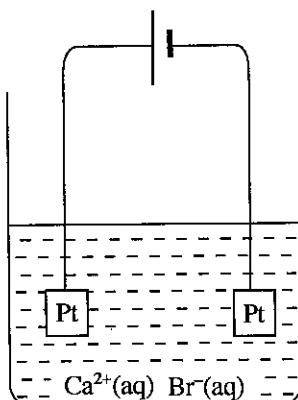
(සූයු.: පොටැසියම් ලිගනය සමඟ පිරියම් කළ විට A හා B හි ඇති මැන්ගනීස් හි ඔක්සිකරණ අවස්ථා වෙනස් නොවේ.)


- A හා B හි මැන්ගනීස්වලට සංගත වී ඇති ලිගන හඳුනාගන්න.
- A, B, C හා D හි ව්‍යුහ දෙන්න.
- A හා B හි මැන්ගනීස් අයනයන්හි ඉලෙක්ට්‍රොනික වින්යාසයන් ලියන්න.
- C හා D හි IUPAC තම් ලියන්න.

(ලක්ෂණ 7.5 ප.)

(b) (i) I. Ag(s) | AgCl(s) | Cl⁻(aq) ඉලෙක්ට්‍රොවයට අදාළ ඔක්සිහරණ අර්ධ ප්‍රතික්‍රියාව ලියන්න.

II. Ag(s) | AgCl(s) | Cl⁻(aq) හි ඉලෙක්ට්‍රොව වින්යාසය දාවණයෙහි Ag⁺ සාන්දුණය මත රදාපවතින්නේ දැයි සඳහන් කරන්න. ඔබගේ පිළිතුර පැහැදිලි කරන්න.


- (ii) පහත ප්‍රතික්‍රියාව සලකන්න.

- I. ඉහත ප්‍රතික්‍රියාවට අදාළ ඔක්සිහරණ හා ඔක්සිහරණ අර්ධ ප්‍රතික්‍රියාව ලියන්න.
- II. ඉහත ප්‍රතික්‍රියාව විද්‍යුත් රසායනික කෝජයක කෝජ ප්‍රතික්‍රියාව බව දී ඇත් නම් එම කෝජයෙහි සම්මත විද්‍යුත් ගාමක බලය නිර්ණය කරන්න.

- (iii) රුපයේ දැක්වෙන පරිදි 0.10 mol dm⁻³ CaBr₂ ජලිය දාවණයක 100.00 cm³ තුළින් 100 mA වූ තියත බාරාවක් යවන ලදී. පද්ධතියේ උණ්ණන්වය 25 °C හි පවත්වා ගන්නා ලදී.

More Past Papers at
tamilguru.lk

- I. ඉලෙක්ට්‍රොවල සිදු වන ඔක්සිහරණ සහ ඔක්සිහරණ ප්‍රතික්‍රියා ලියන්න.
- II. Ca(OH)₂(s) අවක්ෂේප වීම ආරම්භ වීමට ගත වන කාලය ගණනය කරන්න.
- 25 °C හි දී Ca(OH)₂ හි දාවණකා ගුණිතය 1.0×10^{-5} mol³ dm⁻⁹ වේ. ජලයෙහි අයනීකරණය නොසාලකා හරින්න. ජලිය කළාපයෙහි පරිමාව තියත්ව පවතින බව උපකළුපනය කරන්න.

(ලක්ෂණ 7.5 ප.)

* * *

ආචර්තික වගාක

1	1 H													2 He				
2	3 Li	4 Be																
3	11 Na	12 Mg																
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	La- Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	Ac- Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uub	113 Uut	...				

57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr