

නව නිර්දේශය/ප්‍රතිඵල පාඨත්තිට්ම/New Syllabus

NEW

Sri Lanka Department of Examinations, Sri Lanka

අධ්‍යාපන පොදු සහතික පත්‍ර (උක්ස පෙළ) විභාගය, 2020
 කළඹිප් පොත්‍තු තරාතුරුප පත්තිර (ඉයර් තරු)ප පරිශීලක, 2020
 General Certificate of Education (Adv. Level) Examination, 2020

රෝගන විද්‍යාව I
 මුශ්ප ප්‍රතිඵල ප්‍රතිඵල ප්‍රතිඵල
 Chemistry I

02 S I

යය දෙකකි
 මුශ්ප ප්‍රතිඵල ප්‍රතිඵල ප්‍රතිඵල
 Two hours

උපදෙස්:

- * ආවර්තිතා වගුවක් සපයා ඇත.
- * මෙම ප්‍රශ්න පත්‍රය පිටු 09 කින් යුතු වේ.
- * කියලුම ප්‍රශ්නවලට පිළිතුරු සපයන්න.
- * ගෙවන යෑතු භාවිතයෙහි ඉහළ දෙනු නොලැබේ.
- * පිළිතුරු පත්‍රයේ නියමිත ස්ථානයේ ඔබේ විශාල අංකය ලියන්න.
- * පිළිතුරු පත්‍රයේ පිටුපස දී ඇති අනෙක් උපදෙස් සැලකිලිමත්ව කියවන්න.
- * 1 කිට 50 තෙක් එක් එක් ප්‍රශ්නයට (1), (2), (3), (4), (5) යන පිළිතුරුවලින් නිවැරදි හෝ ඉහාමත් ගැඹුපෙන හෝ පිළිතුරු තෝරා ගෙන, එය පිළිතුරු පත්‍රයේ පිටුපස දැක්වෙන උපදෙස් රෝගී කිරීයක (X) යොද දක්වන්න.

$$\text{සාර්වත්‍රික වායු නියතය } R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$\text{ඇඟාඩිරෝ නියතය } N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$$

$$\text{ජැලැන්ක්ගේ නියතය } h = 6.626 \times 10^{-34} \text{ J s}$$

$$\text{ආලෝකයේ ප්‍රවේශය } c = 3 \times 10^8 \text{ m s}^{-1}$$

1. පරමාණුක ව්‍යුහය හා සම්බන්ධ පහත දැක්වෙන සොයා ගැනීම් සලකන්න.

- කුතෝඩි කිරණ නළය තුළ ධෙන කිරණ
- සමහර භාෂ්ටේ වර්ග මගින් ඇති කරන විකිරණයීලිතාවය

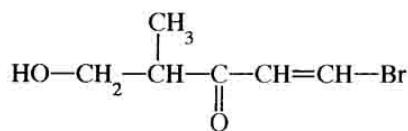
ඉහත I සහ II හි සඳහන් සොයා ගැනීම් කළ විද්‍යාදූයන් දෙදෙනා පිළිවෙළින්,

- ඒ.ඒ. තොමිසන් සහ හෙනරි බෙකරල්
- එපුරන් ගෝල්ඩ්සරයින් සහ රෝබට මිලිකන්
- හෙනරි බෙකරල් සහ එපුරන් ගෝල්ඩ්සරයින්
- ඒ.ඒ. තොමිසන් සහ අර්නස්ටර රුදර්ග් ඩී
- එපුරන් ගෝල්ඩ්සරයින් සහ හෙනරි බෙකරල්

2. මැගනීස් පරමාණුවේ (Mn, Z = 25) $l = 0$ සහ $m_l = -1$ ක්වෙන්ටම් අංක ඇති ඉලෙක්ට්‍රොන් සංඛ්‍යා පිළිවෙළින්,

(1) 6 සහ 4 වේ. (2) 8 සහ 12 වේ. (3) 8 සහ 5 වේ. (4) 8 සහ 6 වේ. (5) 10 සහ 5 වේ.

3. M යනු ආවර්තිතා වගුවේ දෙවන ආවර්තනයට අයන් මූලුව්‍යයකි. එය ද්විමුළු සුරුණයක් ඇති MCl_3 සහසංයුත අණුව සාදයි. ආවර්තිතා වගුවේ M අයන් වන කාණ්ඩය වනුයේ,


(1) 2 (2) 13 (3) 14 (4) 15 (5) 16

4. පෙරෙක්සිනයිටික් අම්ල අණුවක් (ජුතුය HNO_4 , $H-\ddot{\text{O}}-\ddot{\text{O}}-\text{N}^{\oplus}-\ddot{\text{O}}^{\ominus}$) සඳහා ඇදිය හැකි අය්තායි ලුවිස් තින්-ඉරි ව්‍යුහ සංඛ්‍යාව වනුයේ,

(1) 1 (2) 2 (3) 3 (4) 4 (5) 5

5. දී ඇති සංයෝගයේ IUPAC නාමය වනුයේ,

- 1-bromo-4-methyl-5-hydroxypent-1-en-3-one
- 5-bromo-1-hydroxy-2-methylpent-4-en-3-one
- 1-bromo-5-hydroxy-4-methylpent-1-en-3-one
- 5-bromo-2-methyl-3-oxopent-4-en-1-ol
- 1-bromo-4-methyl-3-oxopent-1-enol

6. O, O²⁻, F, F⁻, S²⁻, Cl⁻ යන ප්‍රෝටොන් අඩුවක පිළිවෙළ වන්නේ,

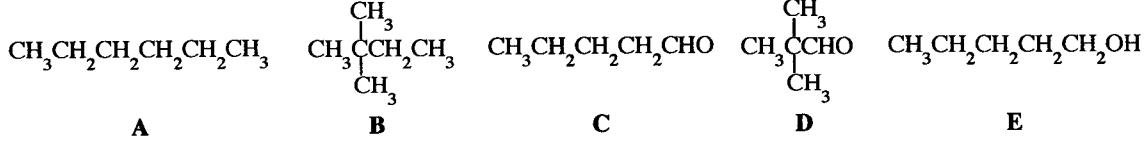
- S²⁻ > Cl⁻ > O²⁻ > F⁻ > O > F
- S²⁻ > Cl⁻ > O²⁻ > F⁻ > F > O
- Cl⁻ > S²⁻ > O²⁻ > F⁻ > O > F
- Cl⁻ > S²⁻ > F⁻ > O²⁻ > O > F
- S²⁻ > Cl⁻ > O²⁻ > O > F⁻ > F

7. T_1 (K) උෂ්ණත්වයේදී සහ P_1 (Pa) පිළිනයේදී දැඩ්-සංචාර බලුනක් තුළ පරිපුරණ වායුවක මුළු n_1 ප්‍රමාණයක් අඩංගු වේ. මෙම බලුනට තවත් වැශිපුර වායු ප්‍රමාණයක් ඇතුළු කළවිට නව උෂ්ණත්වය සහ පිළිවෙළින් T_2 සහ P_2 විය. දැන් හාර්නය තුළ ඇති මුළු වායු මුළු ප්‍රමාණය වන්නේ,

- $\frac{n_1 T_1 P_1}{T_2 P_2}$
- $\frac{n_1 T_1 P_2}{T_2 P_1}$
- $\frac{T_2 P_2}{n_1 T_1 P_1}$
- $\frac{n_1 T_2 P_2}{T_1 P_1}$
- $\frac{n_1 T_2 P_1}{T_1 P_2}$

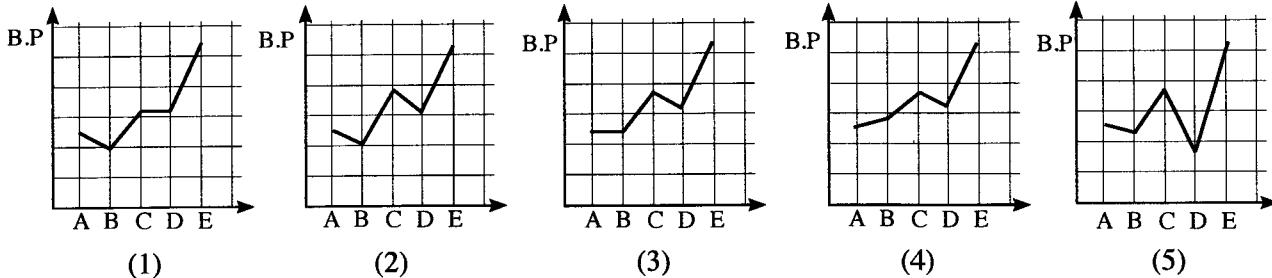
8. ආම්ලික $K_2Cr_2O_7$ දාවණයක් හාවිත කර එකත්නාල් (C₂H₅OH) ඇසිරික් ආම්ලය (CH₃COOH) බවට ඔක්සිකරණය කිරීමේ ප්‍රතික්‍රියාවේදී තුවමාරු වන සම්පූර්ණ ඉලෙක්ට්‍රොන සංඛ්‍යාව වන්නේ,

- 6
- 8
- 10
- 12
- 14


9. ජලය NaOH සමග ප්‍රතික්‍රියා කළවිට ඇල්බෝල් සංස්කන්ධයට හාර්නය විය හැක්කේ පහත දැක්වෙන කුමන සංයෝගය ද?

- $CH_3C(OH)$
- $CH_3C(OCH_3)$
- $H-C(OCH_3)$
- $CH_3CH_2C(H)$
- $(CH_3)_3CC(H)$

10. AX(s), A₂Y(s) හා AZ(s) යනු ජලයෙහි අල්ප වගයෙන් දිය වන ලවණ වන අතර, 25 °C දී ඒවායෙහි K_{sp} අගයන් පිළිවෙළින් 1.6×10^{-9} , 3.2×10^{-11} සහ 9.0×10^{-12} වේ. 25 °C දී A⁺(aq) කුටායනයෙහි සාන්දුණය අඩුවන පිළිවෙළට මෙම ලවණවල සංතාප්ත දාවණ තුනේ පෙළගැස්ම පහත සඳහන් කුමක් මගින් පෙන්වයි ද?


- AX(s) > A₂Y(s) > AZ(s)
- A₂Y(s) > AX(s) > AZ(s)
- AX(s) > AZ(s) > A₂Y(s)
- A₂Y(s) > AZ(s) > AX(s)
- AZ(s) > A₂Y(s) > AX(s)

II. පහත දැක්වෙන සංයෝග සලකන්න.

සාරේක්ෂ
ඇලුක
ස්කන්දය

මෙම සංයෝගයන්හි තාපාංක විවෘතය වඩාත්ම හොඳින් පෙන්වනු ලබන්නේ,

12. NaCl , Na_2S , KF හා KCl යන රසායනික විශේෂවල, සහසංයුත ලක්ෂණ වැඩිවන පිළිවෙළ වනුයේ,

- $\text{KF} < \text{NaCl} < \text{KCl} < \text{Na}_2\text{S}$
- $\text{KCl} < \text{NaCl} < \text{KF} < \text{Na}_2\text{S}$
- $\text{KF} < \text{KCl} < \text{NaCl} < \text{Na}_2\text{S}$
- $\text{Na}_2\text{S} < \text{NaCl} < \text{KCl} < \text{KF}$
- $\text{KF} < \text{Na}_2\text{S} < \text{NaCl} < \text{KCl}$

13. 298 K දී $\text{H}_2(\text{g})$, $\text{C}(\text{s})$ සහ $\text{CH}_3\text{OH}(\text{l})$ හි සම්මත දහන එන්තැල්පින් පිළිවෙළින් -286 kJ mol^{-1} , -393 kJ mol^{-1} සහ -726 kJ mol^{-1} වේ. $\text{CH}_3\text{OH}(\text{l})$ හි වාෂ්පීකරණයේ එන්තැල්පිය $+37 \text{ kJ mol}^{-1}$ වේ. 298 K දී වායුමය CH_3OH මුළු එකක උත්පාදන එන්තැල්පිය (kJ mol^{-1}) වන්නේ,

- 276
- 239
- 202
- +84
- +202

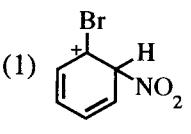
14. පහත දක්වා ඇති තුළින රසායනික සම්කරණයෙන් පෙන්වන ආකාරයට විදුලි උග්මකයක් තුළ පොස්පරස් පිළියෙල කරගත හැක.

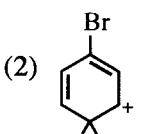
$$2 \text{Ca}_3(\text{PO}_4)_2 + 6 \text{SiO}_2 + 10 \text{C} \rightarrow 6 \text{CaSiO}_3 + 10 \text{CO} + \text{P}_4$$

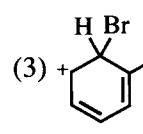
$\text{Ca}_3(\text{PO}_4)_2$ 620 g, SiO_2 180 g සහ C 96 g ප්‍රතිතියා කර වූ විට P_4 50 g ලබා දුනි. මෙම තත්ත්ව යටතේ සීමාකාරී ප්‍රතිකාරකය (සම්පූර්ණයෙන් වැයවන ප්‍රතිකාරකය) සහ P_4 වල ප්‍රතිශත එලදාව (% yield) පිළිවෙළින්, ($\text{C} = 12$, $\text{O} = 16$, $\text{Si} = 28$, $\text{P} = 31$, $\text{Ca} = 40$)

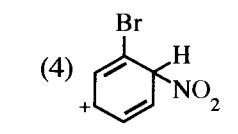
- $\text{Ca}_3(\text{PO}_4)_2$ සහ 80.7%
- SiO_2 සහ 80.7%
- C සහ 50.4%
- SiO_2 සහ 40.3%
- C සහ 25.2%

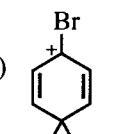
15. එකම තත්ත්ව යටතේදී වෙනත් දැඩ්-සංවාත හාජන දෙකක් තුළ සිදුවන පහත සමතුලිත දෙක සලකන්න.


$$\text{N}_2(\text{g}) + 3\text{H}_2(\text{g}) \rightleftharpoons 2\text{NH}_3(\text{g}) ; K_{P_1} = 3.0 \times 10^{-4}$$


$$\text{NH}_3(\text{g}) + \text{H}_2\text{S}(\text{g}) \rightleftharpoons \text{NH}_4\text{HS}(\text{g}) ; K_{P_2} = 8.0 \times 10^{-4}$$


මෙම තත්ත්ව යටතේදීම $2\text{H}_2\text{S}(\text{g}) + \text{N}_2(\text{g}) + 3\text{H}_2(\text{g}) \rightleftharpoons 2\text{NH}_4\text{HS}(\text{g})$ සමතුලිතය සඳහා K_P වන්නේ,


- 5.76×10^{-12}
- 7.2×10^{-10}
- 1.92×10^{-8}
- 3.40×10^{-6}
- 3.75×10^{-2}


16. බුෂ්මොබෙන්සින්හි තයිපොකරණ ප්‍රතිතියාව සලකන්න. මෙම ප්‍රතිතියාවේදී සම්පූර්ණක්තතාවය මගින් ස්ථායි වූ කාබොකුටායන අතරමැදි සැදෙන්. මෙම අතරමැදියන්හි සම්පූර්ණක්ත ව්‍යුහයක් නොවන්නේ පහත දක්වා ඇති ඒවායින් කුමක් ද?

(1)

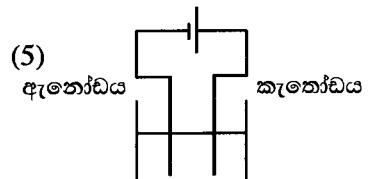
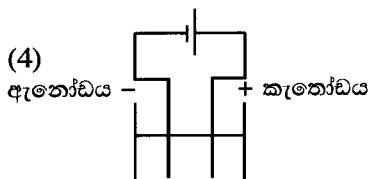
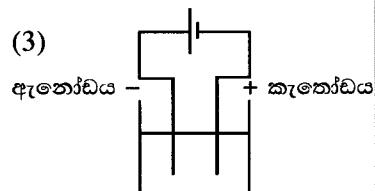
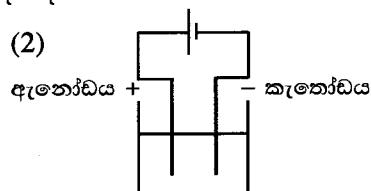
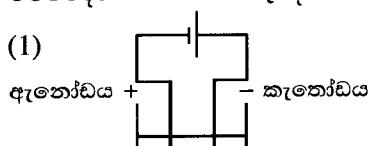
(2)

(3)

(4)

(5)

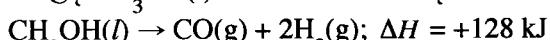
17. ප්‍රතිතියාවක් කාමර උෂ්ණත්වයේදී හා 1 atm පිඩිනයේදී ස්වයායිද්ධ නොවන අතර එම පිඩිනයේදී හා ඉහළ උෂ්ණත්වයේදී ස්වයායිද්ධ බවට පත්වේ. කාමර උෂ්ණත්වයේදී මෙම ප්‍රතිතියාව සඳහා පහත සඳහන් කුමක් නිවැරදි වේ ද? (ΔH සහ ΔS , උෂ්ණත්වය සහ පිඩිනය සමඟ වෙනස් නොවේයුයි උපකල්පනය කරන්න).






ΔG	ΔH	ΔS
(1) දහන	දහන	දහන
(2) දහන	සාරානු	සාරානු
(3) දහන	සාරානු	දහන
(4) සාරානු	දහන	සාරානු
(5) සාරානු	සාරානු	සාරානු

18. v ප්‍රවේශයෙන් ගමන් කරන නියුත්වෝනයක බිඛාග්ලී තරංග ආයාමය λ වේ. මෙම නියුත්වෝනයේ වාලක ගක්තිය $E (E = \frac{1}{2}mv^2)$ හතර ගුණයකින් වැඩි කළවිට නව බිඛාග්ලී තරංග ආයාමය වන්නේ,

- $\frac{\lambda}{2}$
- $\frac{\lambda}{4}$
- 2λ
- 4λ
- 16λ

More Past Papers at
tamilguru.lk


19. පහත සඳහන් කුමක් මගින් MX ලෙසයේ ජලිය දාවණයක් විද්‍යුත් ව්‍යවේදනය කිරීම සඳහා ගොඩනගන ලද විද්‍යුත් ව්‍යවේදන කේළය නිවැරදිව පෙන්වා දෙයි ද?

20. පහත දක්වා ඇති කුමන ප්‍රකාශය කාබොක්සිලික් අම්ලයක් සහ ඇල්කොහොලයක් අතර සිදුවන එස්ටරයක් සැදීමේ ප්‍රතිත්වාව පිළිබඳව නිවැරදි වේ ද?

- (1) සමස්ත ප්‍රතිත්වාව කාබනයිල් සංයෝගයක නියුක්ලයෝගිලික ආකලන ප්‍රතිත්වාවකි.
- (2) එය ඇල්කොහොලය නියුක්ලයෝගිලයක් ලෙස ක්‍රියාකරන ප්‍රතිත්වාවකි.
- (3) එය කාබොක්සිලික් අම්ලයේ O-H බන්ධනය බිඳෙමින් සිදුවන ප්‍රතිත්වාවකි.
- (4) එය ඇල්කොහොලයේ C-O බන්ධනය බිඳෙමින් සිදුවන ප්‍රතිත්වාවකි.
- (5) එය අම්ල-හස්ම ප්‍රතිත්වාවකි.

21. ඉහළ උෂ්ණත්වවලදී $\text{CH}_3\text{OH}(l)$ 1 mol ක් පහත පරිදි වියෝගනය වේ.

පහත සඳහන් කුමක් ඉහත ප්‍රතිත්වාව සඳහා අසත්‍ය වේ ද? (H = 1, C = 12, O = 16)

- (1) $\text{CH}_3\text{OH(g)}$ 1 mol වියෝගනය වනවිට අවශ්‍යෝගය වන තාපය 128 kJ ට වඩා අඩුවේ.
- (2) $\text{CO(g)} + 2\text{H}_2\text{(g)}$ හි එන්තැල්පිය $\text{CH}_3\text{OH}(l)$ හි එන්තැල්පියට වඩා වැඩි වේ.
- (3) CO(g) 1 mol සැදෙන විට 128 kJ ක තාපයක් පිට වේ.
- (4) ප්‍රතිත්වාය මවුලයක් වියෝගනයදී 128 kJ ක තාපයක් අවශ්‍යෝගය වේ.
- (5) එල 32 g සැදෙන විට 128 kJ ක තාපයක් අවශ්‍යෝගය වේ.

22. පහත දැක්වෙන ඒවායින් එරෙදු ප්‍රකාශය හඳුනාගන්න.

- (1) නයිට්‍රොජ්‍ය්‍යාල [N(g)] ඉලෙක්ට්‍රොන් ලබාගැනීමේ ගක්තිය දන වේ.
- (2) $\text{BiCl}_3\text{(aq)}$ දාවණයක් ජලයෙන් තනුක කරන විට සුදු අවක්ෂේපයක් දෙයි.
- (3) H_2S වායුවට ඔක්සිජ්‍යාරකයක් සහ ඔක්සිජ්‍යාරකයක් යන දෙඟාකාරයටම ක්‍රියා කළ හැක.
- (4) He වල සංයුත්තා ඉලෙක්ට්‍රොනයකට දැනෙන සංල න්‍යැෂ්ටික ආරෝපණය (Z^*) 2ට වඩා අඩු ය.
- (5) ඉහළ උෂ්ණත්වයකට රත් කළ වුවද ඇලුම්නියම්, N_2 වායුව කෙරෙහි නිෂ්ප්‍රිය වේ.

23. 298 K දී දුබල අම්ලයක් වන HA හි තනුක ජලිය දාවණයක සාන්දුණිය $C \text{ mol dm}^{-3}$ වන අතර එහි අම්ල විස්වන නියතය K_a වේ. මෙම දාවණයෙහි pH පහත සඳහන් කුමන ප්‍රකාශනය මගින් ලබාදෙයි ද?

- (1) $\text{pH} = \frac{1}{2} \text{p}K_a - \frac{1}{2} \log C$
- (2) $\text{pH} = -\frac{1}{2} \text{p}K_a - \frac{1}{2} \log C$
- (3) $\text{pH} = -\frac{1}{2} \text{p}K_a + \frac{1}{2} \log C$
- (4) $\text{pH} = -\frac{1}{2} \text{p}K_a - \frac{1}{2} \log (1/C)$
- (5) $\text{pH} = \frac{1}{2} \text{p}K_a - \frac{1}{2} \log (1/C)$

24. H_2O_2 දාවණයක ප්‍රබලතාව, සාමාන්‍ය උෂ්ණත්වයේදී හා පිඩිනයේදී (සා.උ.පි.) ලබාදෙන O_2 වායුවේ පරිමාව අනුව ප්‍රකාශ කළ හැක. උදාහරණයක් වශයෙන්, පරිමා ප්‍රබලතාව 20 වන H_2O_2 (20 volume strength H_2O_2) දාවණයකින් ලිටරයක් සා.උ.පි. දී O_2 ලිටර 20 ක් ලබා දෙයි. ($2\text{H}_2\text{O}_2(\text{aq}) \rightarrow 2\text{H}_2\text{O}(\text{l}) + \text{O}_2(\text{g})$) (වායු මුළුලයක් සා.උ.පි. නිදි ලිටර 22.4 ක පරිමාවක් ගන්නා බව උපකළුපනය කරන්න.)

X ලෙස නම් කර ඇති බෝතලයක H_2O_2 දාවණයක් අඩංගු ය. මෙම **X** දාවණයෙන් 25.0 cm^3 තනුක් H_2SO_4 හමුවේ 1.0 mol dm^{-3} KMnO_4 සමග අනුමාපනය කළවිට, අන්ත ලක්ෂණය එළඹීමට අවශ්‍ය වූ පරිමාව 25.0 cm^3 වය. **X** දාවණයේ පරිමා ප්‍රබලතාව වනුයේ,

(1) 15 (2) 20 (3) 25 (4) 28 (5) 30

25. $\text{M(OH)}_2(\text{s})$ යනු 298 K දී $\text{M}^{2+}(\text{aq})$ හා $\text{OH}^-(\text{aq})$ අයන අතර ප්‍රතිත්වාව මගින් සැදුණු ජලයේ අල්ප වශයෙන් දියවන ලිවණයකි. $\text{pH} = 5$ දී ප්‍රලයෙහි $\text{M(OH)}_2(\text{s})$ හා දාවණතාවය (mol dm^{-3}) වන්නේ,

(298 K දී, $K_{sp\text{M(OH)}_2} = 4.0 \times 10^{-36}$)

(1) $\sqrt{2} \times 10^{-18}$ (2) 2×10^{-18} (3) 1×10^{-18} (4) $\sqrt[3]{2} \times 10^{-12}$ (5) 1×10^{-12}

26. 298 K දී සම්මත හයිඩුරන් ඉලෙක්ට්‍රොඩියක්, සම්මත Mg -ඉලෙක්ට්‍රොඩියක් හා ලවණ සේතුවක් හාවිතයෙන් ගොඩනගන ලද සම්මත ගැල්වානි කේෂයක් පහත සඳහන් කුමක් මගින් නිවැරදිව දැක්වෙයි ද?

(1) $\text{Mg(s)} | \text{Mg}^{2+}(\text{aq}, 1.00 \text{ mol dm}^{-3}) || \text{H}^+(\text{aq}, 1.00 \text{ mol dm}^{-3}) | \text{H}_2(\text{g}) | \text{Pt(s)}$
 (2) $\text{Pt(s)} | \text{H}_2(\text{g}) | \text{H}^+(\text{aq}, 1.00 \text{ mol dm}^{-3}) || \text{Mg}^{2+}(\text{aq}, 1.00 \text{ mol dm}^{-3}) | \text{Mg(s)}$
 (3) $\text{Mg(s)}, \text{Mg}^{2+}(\text{aq}, 1.00 \text{ mol dm}^{-3}) || \text{H}^+(\text{aq}, 1.00 \text{ mol dm}^{-3}) | \text{H}_2(\text{g}) | \text{Pt(s)}$
 (4) $\text{Mg(s)} | \text{Mg}^{2+}(\text{aq}, 1.00 \text{ mol dm}^{-3}), \text{H}^+(\text{aq}, 1.00 \text{ mol dm}^{-3}), \text{H}_2(\text{g}) | \text{Pt(s)}$
 (5) $\text{Pt(s)}, \text{H}_2(\text{g}) | \text{H}^+(\text{aq}, 1.00 \text{ mol dm}^{-3}) || \text{Mg}^{2+}(\text{aq}, 1.00 \text{ mol dm}^{-3}), \text{Mg(s)}$

27. 298 K දී බිඩික්ලෝරෝමීන්න් සහ ජලය අතර ඒකභාස්මික කාබනික අම්ලයක ව්‍යාප්ති සංග්‍රහකය K_D නිර්ණය කිරීම සඳහා පහත කුමය හාවිත කරන ලදී. 0.20 mol dm^{-3} අම්ලයෙහි ජලිය දාවණයකින් 50.00 cm^3 ක් බිඩික්ලෝරෝමීන්න් 10.00 cm^3 ක් සමග හොඳින් මූළු කර ස්තර දෙක වෙන් වීමට තබන ලදී. ඉන්පසු ප්ලාස්ටික්වේ පහළ ඇති බිඩික්ලෝරෝමීන්න් ස්තරය ඉවත් කරන ලදී. ජලිය ස්තරයෙහි ඉතිරිව ඇති අම්ලය උදාසීනා කිරීම සඳහා 0.02 mol dm^{-3} NaOH(aq) දාවණයකින් 10.00 cm^3 ක් අවශ්‍ය විය. (කාබනික ස්තරයේදී අම්ලය ද්වීඥවිකරණය නොවේ යැයි උපකළුපනය කරන්න.) බිඩික්ලෝරෝමීන්න් හා ජලය අතර 298 K දී අම්ලයෙහි K_D වනුයේ,

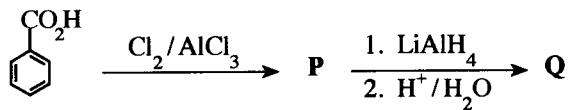
(1) 0.05 (2) 0.25 (3) 4.00 (4) 20.00 (5) 245.00

28. දෙන ලද උෂ්ණත්වයකදී දැඩි-සංවාත සාරනයක් කුළ $\text{C}_2\text{H}_4(\text{g}) + 3\text{O}_2(\text{g}) \rightarrow 2\text{CO}_2(\text{g}) + 2\text{H}_2\text{O}(\text{g})$ ප්‍රතිත්වාව සිදු වේ. යම් කාලයකට පසු $\text{C}_2\text{H}_4(\text{g})$ වැය වීමට සාපේක්ෂව ප්‍රතිත්වාවේ ශිෂ්ටතාවය $x \text{ mol dm}^{-3} \text{ s}^{-1}$ බව සොයාගන්නා ලදී. පහත සඳහන් කුමක් මගින් එම කාලය කුළදී ප්‍රතිත්වාවේ $\text{O}_2(\text{g})$ වැයවීමේ, $\text{CO}_2(\text{g})$ සැදීමේ හා $\text{H}_2\text{O}(\text{g})$ සැදීමේ ශිෂ්ටතා පිළිවෙළින් පෙන්වයි ද?

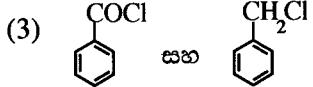
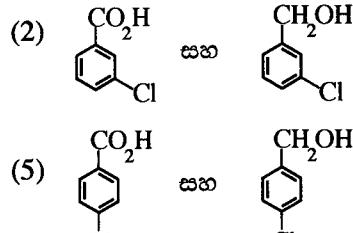
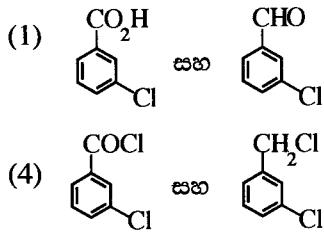
ශිෂ්ටතාව / $\text{mol dm}^{-3} \text{ s}^{-1}$

$\text{O}_2(\text{g}) \quad \text{CO}_2(\text{g}) \quad \text{H}_2\text{O}(\text{g})$

(1) $\frac{3}{x} \quad \frac{2}{x} \quad \frac{2}{x}$
 (2) $x \quad x \quad x$
 (3) $\frac{x}{3} \quad \frac{x}{2} \quad \frac{x}{2}$
 (4) $\frac{1}{x} \quad \frac{1}{x} \quad \frac{1}{x}$
 (5) $3x \quad 2x \quad 2x$


29. T උෂ්ණත්වයේදී දැඩි-සංවාත බුදුනක් කුළ සිදුවන පහත සඳහන් ප්‍රතිත්වාව සලකන්න.

$\text{M(g)} + \text{Q(g)} \rightarrow \text{R(g)} + \text{Z(g)}$




M හා Q හි සාන්දුන පිළිවෙළින් $1.0 \times 10^{-5} \text{ mol dm}^{-3}$ හා 2.0 mol dm^{-3} වනවිට ප්‍රතිත්වාවේ ශිෂ්ටතාවය $5.00 \times 10^{-4} \text{ mol dm}^{-3} \text{ s}^{-1}$ වේ. M හි සාන්දුනය දෙගුණ කළවිට ප්‍රතිත්වාවේ ශිෂ්ටතාවය දෙගුණ විය. මෙම තත්ත්ව යටතේදී ප්‍රතිත්වාවේ වේග නියතය වන්නේ,

(1) $2.5 \times 10^{-4} \text{ s}^{-1}$ (2) 12.5 s^{-1} (3) 25 s^{-1} (4) 50 s^{-1} (5) 500 s^{-1}

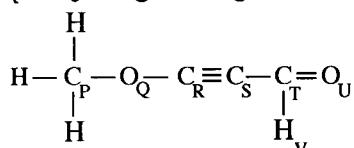
30. පහත දැක්වෙන ප්‍රතික්‍රියා අනුත්‍මය සලකන්න.

P සහ Q පිළිවෙළින් විය භැක්කේ,

● අංක 31 සිට 40 තෙක් එක් එක් ප්‍රශ්නය සඳහා දී ඇති (a), (b), (c) සහ (d) යන ප්‍රතිවාර හතර අනුරෙන්, එකක් හෝ වැඩි සංඩාවක් හෝ නිවැරදි ය. නිවැරදි ප්‍රතිවාරය/ප්‍රතිවාර කවරේ දැ'යි තෝරා ගන්න.

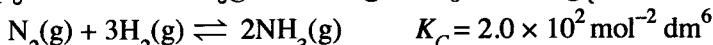
(a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද
 (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද
 (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද
 (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද

වෙනත් ප්‍රතිවාර සංඩාවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මත ද
 පිළිතුරු පත්‍රයෙහි දැක්වෙන උපදෙස් පරිදි ලක්ෂණ කරන්න.


ඉහත උපදෙස් යම්පිනය

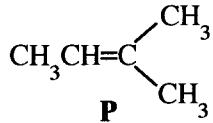
(1)	(2)	(3)	(4)	(5)
(a) සහ (b) පමණක් නිවැරදියි	(b) සහ (c) පමණක් නිවැරදියි	(c) සහ (d) පමණක් නිවැරදියි	(d) සහ (a) පමණක් නිවැරදියි	වෙනත් ප්‍රතිවාර සංඩාවක් හෝ සංයෝජනයක් හෝ නිවැරදියි

31. 3d-ගොනුවේ මූලද්‍රව්‍ය සහ ඒවායේ සංයෝග පිළිබඳව පහත දැක්වෙන කුමන ප්‍රකාශය/ප්‍රකාශ නිවැරදි වේ ද?


(a) 3d-ගොනුවේ මූලද්‍රව්‍ය අනුරෙන්, Sc ආන්තරික මූලද්‍රව්‍යයක් ලෙස නොසැලකේ.
 (b) පරමාණුවල (Sc සිට Cu දක්වා) අරයන් වමේ සිට දකුණට අඩු වේ.
 (c) $[\text{Ni}(\text{NH}_3)_6]^{2+}$ වල පාට නිල් වන අතර $[\text{Zn}(\text{NH}_3)_4]^{2+}$ අවර්ණ වේ.
 (d) K_2NiCl_4 වල IUPAC නම වන්නේ dipotassium tetrachloronickelate(II).

32. පහත දැක්වෙන අණුව සඳහා කුමන ප්‍රකාශය/ප්‍රකාශ නිවැරදි වේ ද?

(a) P, Q, R සහ S වශයෙන් ලේඛලේ කර ඇති පරමාණු සරල රේඛාවක පිහිටයි.
 (b) Q, R, S සහ T වශයෙන් ලේඛලේ කර ඇති පරමාණු සරල රේඛාවක පිහිටයි.
 (c) R, S, T, U සහ V වශයෙන් ලේඛලේ කර ඇති පරමාණු එකම තළයේ පිහිටයි.
 (d) R, S, T සහ U වශයෙන් ලේඛලේ කර ඇති පරමාණු සරල රේඛාවක පිහිටයි.


33. 500 K දී $\text{N}_2(\text{g})$ මුළු 0.01 ක්, $\text{H}_2(\text{g})$ මුළු 0.10 ක් සහ $\text{NH}_3(\text{g})$ මුළු 0.40 ක්, 1.0 dm^3 දාඩ්-සංවෘත භාර්තයක් තුළට ඇතුළු කර පහත සමතුලිතතාවය එළැම්මට ඉතු හරින ලදී.

ආරම්භයේ සිට සමතුලිතතාවය දක්වා මෙම පද්ධතියේ වෙනස්වීම් පිළිබඳ පහත දැක්වෙන කුමන ප්‍රකාශය/ප්‍රකාශ නිවැරදි වේ ද? Q_C යනු ප්‍රතික්‍රියා ලබාදිය වේ.

(a) ආරම්භයේදී $Q_C > K_C$; $\text{NH}_3(\text{g})$ මිශ්‍රන් $\text{N}_2(\text{g})$ හා $\text{H}_2(\text{g})$ සැදීම ආරම්භ වී පද්ධතිය සමතුලිතතාවයට එළඟී.
 (b) ආරම්භයේදී $Q_C < K_C$; $\text{NH}_3(\text{g})$ මිශ්‍රන් $\text{N}_2(\text{g})$ හා $\text{H}_2(\text{g})$ සැදීම ආරම්භ වී පද්ධතිය සමතුලිතතාවයට එළඟී.
 (c) ආරම්භයේදී $Q_C < K_C$; $\text{N}_2(\text{g})$ හා $\text{H}_2(\text{g})$ ප්‍රතික්‍රියා කර $\text{NH}_3(\text{g})$ සැදී පද්ධතිය සමතුලිතතාවයට එළඟී.
 (d) ආරම්භයේදී $Q_C > K_C$; $\text{N}_2(\text{g})$ හා $\text{H}_2(\text{g})$ ප්‍රතික්‍රියා කර $\text{NH}_3(\text{g})$ සැදී පද්ධතිය සමතුලිතතාවයට එළඟී.

34. P සංයෝගය සහ HCl අතර ඇල්කයිල් හේලයිඩයක් සැදෙන ප්‍රතික්‍රියාව පිළිබඳව පහත දැක්වෙන ක්‍රමන ප්‍රකාශය/ප්‍රකාශ නිවැරදි වේ ද?

- (a) ප්‍රධාන එලය වන්නේ 2-chloro-2-methylbutane ය.
- (b) මෙම ප්‍රතික්‍රියාවේදී අතරමැදියක් ලෙස ද්‍රව්‍යිතියික කාබොකැටායනයක් සැදේ.
- (c) ප්‍රතික්‍රියාවේ එක් පියවරකදී, HCl බන්ධනය බිඳී ක්ලෝරින් මුක්ත බණ්ඩයක් (Cl^-) ලබා දේ.
- (d) ප්‍රතික්‍රියාවේ එක් පියවරකදී, කාබොකැටායනයක් සමඟ නියුක්ලියෝගයිලයක් ප්‍රතික්‍රියා කරයි.

35. දී ඇති උෂ්ණත්වයකදී රේවනය කළ සංවහන බදුනක් ක්‍රුල දුව දෙකක් මිශ්‍රිතෙන් සාංචාරණයක් ප්‍රාවණයක් රුවුල් නියමයෙන් සාංචාරණයක් දක්වයි. පහත සඳහන් ක්‍රමන ප්‍රකාශය/ප්‍රකාශ මෙම පදනම්තිය සඳහා නිවැරදි වේ ද?

- (a) මිශ්‍රණයෙහි මුළු වාෂ්ප පිබනය එම මිශ්‍රණය පරිපූර්ණ ලෙස හැසිරුණේ නම් බලාපොරොත්තු විය හැකි මුළු වාෂ්ප පිබනයට වඩා අඩු ය.
- (b) මිශ්‍රණය සැදෙන විට තාපය පිට වේ.
- (c) මිශ්‍රණයෙහි වාෂ්ප කළාපයෙහි ඇති අණු සංඛ්‍යාව එම මිශ්‍රණය පරිපූර්ණ ලෙස හැසිරුණේ නම් බලාපොරොත්තු විය හැකි අණු සංඛ්‍යාවට වඩා වැඩි ය.
- (d) මිශ්‍රණය සැදෙන විට තාපය අවශ්‍යණය වේ.

36. CFC, HCFC සහ HFC සම්බන්ධයෙන් පහත දැක්වෙන ක්‍රමන ප්‍රකාශය/ප්‍රකාශ නිවැරදි වේ ද?

- (a) CFC සහ HCFC යන සංයෝග කාණ්ඩ දෙකටම ඉහළ වායුගෝලයේදී (ස්තර ගෝලය) ක්ලෝරින් මුක්ත බණ්ඩකා නිපදවීමේ හැකියාව ඇත.
- (b) HFC සහ HCFC යන සංයෝග කාණ්ඩ දෙකටම ඉහළ වායුගෝලයේදී (ස්තර ගෝලය) ක්ලෝරින් මුක්ත බණ්ඩකා නිපදවීමේ හැකියාව ඇත.
- (c) CFC, HCFC සහ HFC යන සංයෝග කාණ්ඩ ක්‍රුනම ප්‍රබල හරිනාගාර වායුන් වේ.
- (d) CFC, HCFC සහ HFC යන සංයෝග කාණ්ඩ ක්‍රුනම තිසේශ්‍රී වියන ක්ෂේර්යීමට සැලකිය යුතු ලෙස දායක වේ.

37. හැලුණ, උවිව වායු සහ ඒවායේ සංයෝග පිළිබඳව පහත දැක්වෙන ක්‍රමන ප්‍රකාශය/ප්‍රකාශ නිවැරදි වේ ද?

- (a) හයිපොක්ලෝරස් අයනය ආමිලික දාවණුවල වේගයෙන් ද්‍රව්‍යිකරණය වේ.
- (b) Xe, F_2 වායුව සමග සංයෝග මිශ්‍රණයක් සාදන අතර, ඒවා අතුරෙන් XeF_4 වලට තලිය සම්බනුප්‍රාකාර ජ්‍යාමිතියක් ඇත.
- (c) හයිපුරුණ් හේලයිඩ අතුරෙන් මුවුදයක් සඳහා වැඩිම බන්ධන විසටන ගක්තිය ඇත්තේ HF වලට ය.
- (d) ලන්ඩින් බලවල ප්‍රබලතාව වැඩි වීම හේතු කොටගෙන හැලුණවල තාපාංක කාණ්ඩයේ පහළට වැඩි වේ.

38. කාමර උෂ්ණත්වයේදී තියාත්මක වනවිට බැහියෙල් කේෂය පිළිබඳව පහත සඳහන් ක්‍රමන ප්‍රකාශය/ප්‍රකාශ නිවැරදි වේ ද? ($E_{cell}^{\circ} = +1.10 \text{ V}$)

- (a) ඉද්ධ ඉලෙක්ට්‍රොන ප්‍රවාහය Zn සිට Cu දක්වා සිදු වේ.
- (b) $\text{Zn}^{2+}(\text{aq}) + 2\text{e} \rightleftharpoons \text{Zn}(\text{s})$ සමතුලිතතාවය දකුණට නැඹුරු වේ.
- (c) ලවණ සේතුවක් තිබීම නිසා ද්‍රව්‍ය-සන්ධි විහාරයක් ඇති වේ.
- (d) $\text{Cu}^{2+}(\text{aq}) + 2\text{e} \rightleftharpoons \text{Cu}(\text{s})$ සමතුලිතතාවය දකුණට නැඹුරු වේ.

39. තියත උෂ්ණත්වයකදී පරිපූර්ණ හා තාත්ත්වික වායුන් සඳහා පහත සඳහන් ක්‍රමන ප්‍රකාශය/ප්‍රකාශ නිවැරදි වේ ද?

- (a) ඉතා ඉහළ පිබනවලදී තාත්ත්වික වායුවක පරිමාව පරිපූර්ණ වායුවක පරිමාවට වඩා වැඩි වේ.
- (b) ඉහළ පිබනවලදී තාත්ත්වික වායු පරිපූර්ණ වායු ලෙස හැසිරීමට නැඹුරු වේ.
- (c) ඉතා ඉහළ පිබනවලදී තාත්ත්වික වායුවක පරිමාව පරිපූර්ණ වායුවක පරිමාවට වඩා අඩු වේ.
- (d) අඩු පිබනවලදී තාත්ත්වික වායු පරිපූර්ණ වායුලෙස හැසිරීමට නැඹුරු වේ.

40. සමහර කාම්පික තියාවලි හා සම්බන්ධව පහත දැක්වෙන ක්‍රමන ප්‍රකාශය/ප්‍රකාශ නිවැරදි වේ ද?

- (a) සේල්වේ තියාවලිය මගින් Na_2CO_3 නිෂ්පාදනය හා සම්බන්ධ පළමු පියවර දෙක තාප අවශ්‍යක වේ.
- (b) මුදින්වල $\text{Mg}^{2+}, \text{Ca}^{2+}$ හා SO_4^{2-} අයන පැවතීම, පටල කේෂ ක්‍රමය යොදා ගැනීමෙන් NaOH නිෂ්පාදනයට බාධා පමුණුවයි.
- (c) මස්වල්ඩ් ක්‍රමය මගින් නයිට්‍රීන් අම්ල නිෂ්පාදනය හා සම්බන්ධ පළමු පියවර උත්ප්‍රේරකයක් හමුවේ වාතයේ ඇති O_2 මගින් NH_3 වායුව ඔක්සිකරණය කර NO_2 වායුව ලබාදීම වේ.
- (d) හේබර්-බොජ් ක්‍රමය යොදා NH_3 වායුව නිෂ්පාදනයේදී ඉහළ උෂ්ණත්ව හා අඩු පිබන තත්ත්ව යොදාගතී.

● අංක 41 සිට 50 තෙක් එක් එක් ප්‍රශ්නය සඳහා ප්‍රකාශ දෙක බැඟින් ඉදිරිපත් කර ඇත. එම ප්‍රකාශ යුගලයට නොදැන්ම ගැලපෙනුයේ පහත වගුවෙහි දැක්වෙන පරිදී (1), (2), (3), (4) සහ (5) යන ප්‍රතිචාරවලින් කවර ප්‍රතිචාරය දැයි තෝරා පිළිතුරු පත්‍රයෙහි උච්ච ලෙස ලක්ෂු කරන්න.

ප්‍රතිචාරය	උපුවනී ප්‍රකාශය	දෙවැනී ප්‍රකාශය
(1)	සත්‍ය වේ.	සත්‍ය වන අතර, පළමුවැනි ප්‍රකාශය නිවැරදිව පහසු දෙයි.
(2)	සත්‍ය වේ.	සත්‍ය වන නමුත් පළමුවැනි ප්‍රකාශය නිවැරදිව පහසු නොදෙයි.
(3)	සත්‍ය වේ.	අසත්‍ය වේ.
(4)	අසත්‍ය වේ.	සත්‍ය වේ.
(5)	අසත්‍ය වේ.	අසත්‍ය වේ.

	උපුවනී ප්‍රකාශය	දෙවැනී ප්‍රකාශය
41.	Cr සහ Mn හි ඔක්සයිඩ් අතුරෙන්, CrO සහ MnO ආම්ලික වන අතර, CrO_3 සහ Mn_2O_7 භාස්මික වේ.	Cr සහ Mn වල ඔක්සයිඩ්වල ආම්ලික/භාස්මික ස්වභාවය, ලේඛනයේ ඔක්සයිකරණ අංකය මත රඳා පවතී.
42.	HA(aq) දුබල අම්ලයක් එහි සේවියම් ලවණය NaA(aq) සමග මූල්‍ය කිරීමෙන් ආම්ලික ස්වාරක්ෂක දාවණයක් පිළියෙළ කළ හැකි ය.	$\text{OH}^-(\text{aq})$ හෝ $\text{H}^+(\text{aq})$ අයන ස්වාරක්ෂක දාවණයකට එකතු කළවේ, එකතු කරන ලද $\text{OH}^-(\text{aq})$ හෝ $\text{H}^+(\text{aq})$ අයන ප්‍රමාණ පිළිවෙළින්; $\text{OH}^-(\text{aq}) + \text{HA(aq)} \rightarrow \text{A}^-(\text{aq}) + \text{H}_2\text{O(l)}$ හා $\text{H}^+(\text{aq}) + \text{A}^-(\text{aq}) \rightarrow \text{HA(aq)}$ ප්‍රතික්‍රියා මගින් ඉවත් වේ.
43.	පුමාල ආසවනය මගින් 100°C වලට වඩා අඩු උෂ්ණත්වයකදී ගාකවලින් සගන්ධ තෙල් නිස්සාරණය කළ හැකිය.	සගන්ධ තෙල් සහ ජලය මිශ්‍රණය නවන උෂ්ණත්වයේදී, පද්ධතියෙහි මුළු වාෂ්ප පිඩිනය බාහිර වායුගෝලීය පිඩිනයට වඩා අඩු ය.
44.	දී ඇති උෂ්ණත්වයකදී හා පිඩිනයකදී වෙනස් පරිපුරුණ වායුන් දෙකක මුවුලික පරිමාවන් එකිනෙකින් වෙනස් වේ.	0°C උෂ්ණත්වයේදී හා 1 atm පිඩිනයේදී පරිපුරුණ වායුවක මුවුලික පරිමාව $22.4 \text{ dm}^3 \text{ mol}^{-1}$ වේ.
45.	$\text{C}=\text{C}$ බන්ධනයක් සහිත සියලුම සංයෝග පාර්තිමාන සමාවයේකතාවය පෙන්වයි.	එකිනෙකෙහි දර්පණ ප්‍රතිඵිම්ල නොවන මිනැම සමාවයේක දෙකක් පාර්තිමාන සමාවයේක වේ.
46.	බෙන්සින්සි හයිඩ්‍රූජන්සිකරණය ඇල්කිනවල හයිඩ්‍රූජන්සිකරණයට වඩා අපහසු ය.	බෙන්සින්වලට හයිඩ්‍රූජන් ආකෘත්‍ය වීම ඇරෝමැවික ස්ථාධිතාවය හැකි වීමට හේතු වේ.
47.	සල්භිජරික් අම්ල නිෂ්පාදනයේදී SO_3 වායුව සහ ජලය අතර සිදුවන තාප අවශ්‍යක වේ.	SO_3 වායුව සාන්දු H_2SO_4 සමග ප්‍රතික්‍රියා කළවේ හිඳියම් ලබා දේ.
48.	ඇමෝනියා සහ ඇල්කින්ලේ හේල්ඩියක් අතර සිදුවන ප්‍රතික්‍රියාවන්, ප්‍රාථමික, ද්විතීයික සහ තාතියික ඇමෝනවල සහ වානුරුප ඇමෝනියම් ලවණයක මිශ්‍රණයක් ලැබේ.	ප්‍රාථමික, ද්විතීයික සහ තාතියික ඇමෝනවලට නිශ්ප්‍රක්ෂීලියෝගී ලෙස ප්‍රතික්‍රියා කළ හැක.
49.	$\text{P} + \text{Q} \rightarrow \text{R}$ යනු P ප්‍රතික්‍රියාවට සාලේක්ෂව පළමු පෙළ ප්‍රතික්‍රියාවක් වේ නම් P හි සාන්දුණයට එරෙහි ශිෂ්ටතාවය ප්‍රස්තාරය මූල ලක්ෂණය හරහා යන සරල රේඛාවක් ලබාදෙයි.	පළමු පෙළ ප්‍රතික්‍රියාවක ආරම්භක සිෂ්ටතාවය ප්‍රතික්‍රියාව/ප්‍රතික්‍රියක සාන්දුණයෙන් ස්වායත්ත වේ.
50.	අධික වාහන තදබදය සහිත නගරයක, නොදැන් ඉර පායා ඇති දිනයක, ප්‍රකාශ රසායනික දුම්කාව ප්‍රබලව දැකිය හැක.	ප්‍රකාශ රසායනික දුම්කාව මුළුමතින්ම ඇතිවන්නේ රෝවාහන, අපවාහ පද්ධති මගින් පිටකරන සියුම් අංශ සහ ජල බිඳීම් මගින් සුරු කිරීම ප්‍රතිම හේතුවෙනි.

ආචාරකා වගුව

	1	H															2	He
1	3	4															10	Ne
2	Li	Be															17	18
3	11	12															Cl	Ar
4	Na	Mg															35	36
5	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	Br	Kr
6	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se		
7	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
8	55	56	La	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
9	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
10	Fr	Ra	Ac	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
11	Rf	Lr	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og		

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71		
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103		
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		

நல திரட்டையை/புதிய பாடத்திட்டம்/New Syllabus

අධ්‍යාපන පොදු සහතික පත්‍ර (උක්‍ර පෙළ) විභාගය, 2020
කළුවිප් පොතුත් තරාතරප් පත්තිර (ඉ_යර් තර)ප් පරිශ්‍යාස, 2020
General Certificate of Education (Adv. Level) Examination, 2020

ரூக்கிய விடைகள்	II
இரசாயனவியல்	II
Chemistry	II

02 S II

ପରେ ରୁହଣି
ମୁଣ୍ଡୁ ମଣିତ୍ତିଯାଲମ୍
Three hours

අමතර කියවූ කාලය	- මෙහෙතු 10 දි
මෙළතික බාසිපු නෙරම	- 10 නිමිටණකள්
Additional Reading Time	- 10 minutes

අමතර ඩියවීම කාලය පුළුන පැවත යියතා පුළුන තෝරා ගැනීමෙන් පිළිගෙන ලිවිමේදු පුමුවන්වය දෙන පුළුන කාලීනය තුළ ගැනීමෙන් යොදා යෙතු.

- * ආවර්තන් වගුවක් 15 වැනි පිටුවෙහි සපයා ඇත.
- * ගොඩ සේතු ආවිතයට ඉඩ දෙනු නොලැබේ.
- * සාරවතු වායු තියනය, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$
- * ඇව්ගාඩිරේ තියනය, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$
- * මෙම රුහු රැකියාව එලිනරු සැපයීමේදී පැල්කයිල් කාල්ඩ් සංක්තිප්ත ආකාරයකින් හිරුප්පාය කළ භාජි ය.

විභාග අංකය :

විගාග අංකය :

ලුදුගරහය: $\begin{array}{c} \text{H} & \text{H} \\ & | & | \\ \text{H} - \text{C} & - \text{C} - & \text{කාන්ඩය } \text{CH}_3\text{CH}_2 - \\ & | & | \\ & \text{H} & \text{H} \end{array}$ ලෙස දැක්වීය හැකි ය.

□ A කොටස - ව්‍යුහගත රෙඛා (පිටු 02 - 08)

- * සියලුම ප්‍රය්‍රිත්වයට මෙම ප්‍රය්‍රිත්වය පිළිතුරු සපයන්න.
- * ඔබ පිළිතුරු එක් එක් ප්‍රය්‍රිත්වයට ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ ප්‍රමාණය පිළිතුරු ලිවිමට ප්‍රමාණවත් බවද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බවද සලකන්න.

□ B කොටස සහ C කොටස - රටනා (පිටු 09 - 14)

- * එක් එක් කොටසින් ප්‍රශ්න දෙක බැංකින් තෝරා ගනිමින් ප්‍රශ්න සහරකට පිළිතුරු සපයන්න. මේ සඳහා සපයනු ලබන කඩුසි හාවිත කරන්න.
- * සම්පූර්ණ ප්‍රශ්න පත්‍රයට තියෙමින කාලය අවසන් වූ පසු A, B සහ C කොටස් තුනට පිළිතුරු, A කොටස මුළුන් තිබෙන පරිදි එක් පිළිතුරු පත්‍රයක් වන නේ අමුණා විභාග ගාලාධිපතිට හාර දෙන්න.
- * ප්‍රශ්න පත්‍රයහි B සහ C කොටස් පම්බාක් විභාග ගාලාවෙන් පිටත ගෙන යාමට ඔබට අවසර ඇත.

පරිග්‍රාමකවරුන්ගේ පෙශේපනය සිංහා පමණි

කොටස	ප්‍රතින් අංකය	ලංඡු ලක්ෂණ
A	1	
	2	
	3	
	4	
B	5	
	6	
	7	
C	8	
	9	
	10	
එකතුව		

උකතුව

උත්තර පත්‍ර පරික්ෂක 1	
උත්තර පත්‍ර පරික්ෂක 2	
පරික්ෂා කළේ :	
අධික්ෂණය කළේ :	

A සොටස - ව්‍යුහගත රට්තා

ප්‍රශ්න ගතරවම මෙම පත්‍රයේම පිළිතුරු සපයන්න. (එක් එක් ප්‍රශ්නය සඳහා නියමිත ලක්ෂු ප්‍රමාණය 100 කි.)

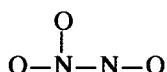
සොටස
සිරස්
කිහිපය
භාෂා උග්‍රතා

1. (a) පහත දැක්වෙන ප්‍රශ්නවලට තින් ඉරි මත පිළිතුරු සපයන්න.

(i) Na^+ , Mg^{2+} සහ F^- යන අයන තුන අතුරෙන්, කුම්මම අයනික අරය ඇත්තේ කුමකට ද?

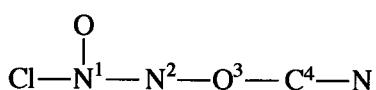
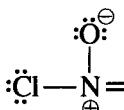
(ii) C, N සහ O යන මූලුව්‍ය තුන අතුරෙන්, වැඩිම දෙවන අයනීකරණ ගක්තිය ඇත්තේ කුමකට ද?

(iii) H_2O , HOCl සහ OF_2 යන සංයෝග තුන අතුරෙන්, වඩාත්ම විද්‍යුත් සාරා ගක්ෂිත් පරමාණුව ඇත්තේ කුමක ද?


(iv) Be, C සහ N යන මූලුව්‍ය තුන අතුරෙන්, වායුමය අවස්ථාවේදී පරමාණුවකට ඉලෙක්ට්‍රොනයක් එකතු කළ විට $[\text{Y}(g) + e \rightarrow \text{Y}^-(g); \text{Y} = \text{Be, C, N}]$ ගක්තිය පිටකරනුයේ කුමක ද?

(v) NaF , KF සහ KBr යන අයනික සංයෝග තුන අතුරෙන්, ජලයේ වැඩිම දාචාකාව ඇත්තේ කුමකට ද?

(vi) HCHO , CH_3F සහ H_2O_2 යන සංයෝග තුන අතුරෙන්, ප්‍රබලම අන්තර්-අණුක බල ඇත්තේ කුමකට ද?



(ලක්ෂු 24 පි)

(b) (i) $\text{N}_2\text{O}_3^{2-}$ අයනය සඳහා වඩාත්ම පිළිගත හැකි ලුවිස් තින්-ඉරි ව්‍යුහය අදින්න. එහි සැකිල්ල පහත දක්වා ඇත.

(ii) මෙම අයනය සඳහා තවත් ලුවිස් තින්-ඉරි ව්‍යුහ (සම්පූර්ණ ව්‍යුහ) තුනක් අදින්න. ඉහත (i) හි අදින ලද වඩාත්ම පිළිගත හැකි ව්‍යුහය සමඟ සංසන්ධාය කිරීමේදී ඔබ විසින් අදින ලද ව්‍යුහවල සාපේක්ෂ ස්ථායිතාවයන් සඳහන් කිරීමට එම ව්‍යුහ යටතේ 'අතු ස්ථායි' හෝ 'අතු ස්ථායි' වශයෙන් උග්‍ර දක්වන්න.

(iii) පහත සඳහන් ලුවිස් තින්-ඉරි ව්‍යුහය සහ එහි ලේඛල් කරන ලද සැකිල්ල පදනම් කරගෙන දී ඇති වගුව සම්පූර්ණ කරන්න.

	N^1	N^2	O^3	C^4
පරමාණුව වටා VSEPR යුගල්				
පරමාණුව වටා ඉලෙක්ට්‍රොන යුගල් ජ්‍යාමිතිය				
පරමාණුව වටා හැඩා				
පරමාණුවේ මුහුමිකරණය				

● කොටස (iv) සිට (vii), ඉහත (iii) කොටසෙහි දෙන ලද ප්‍රවිස් තිත්-ඉරි ව්‍යුහය මත පදනම් වේ. පරමාණු ලේඛල් කිරීම (iii) කොටසෙහි ආකාරයටම වේ.

(iv) පහත දැක්වෙන පරමාණු දෙක අතර ර බන්ධන සැදීමට සහභාගි වන පරමාණුක/මුහුම් කාක්ෂික හැඳුනාගන්න.

I. Cl—N ¹	Cl	N ¹
II. N ¹ —O	N ¹	O
III. N ¹ —N ²	N ¹	N ²
IV. N ² —O ³	N ²	O ³
V. O ³ —C ⁴	O ³	C ⁴
VI. C ⁴ —N	C ⁴	N

(v) පහත දැක්වෙන පරමාණු දෙක අතර ර බන්ධන සැදීමට සහභාගි වන පරමාණුක කාක්ෂික හැඳුනාගන්න.

I. N ¹ —N ²	N ¹	N ²
II. C ⁴ —N	C ⁴	N
	C ⁴	N

(vi) N¹, N², O³ සහ C⁴ පරමාණු වටා ආසන්න බන්ධන කෝෂ සඳහන් කරන්න.

N¹, N², O³, C⁴

(vii) N¹, N², O³ සහ C⁴ පරමාණු විද්‍යුත් සාර්කාව වැඩිවත පිළිවෙළට සකසන්න.

..... < < < (කොණ 56 පි)

(c) පහත සඳහන් තොරතුරු සලකන්න.

I. A සහ B පරමාණු සංයෝගනය වී ර බන්ධනයක් සහිත විෂමගාතීය ද්වීපරමාණුක AB අණුව සාදයි. මෙය A—B ලෙස නිරූපණය කරනු ලැබේ.

II. A වල විද්‍යුත් සාර්කාවය B වල එම අගයට වඩා අඩු ය (X_A < X_B).

X = පරමාණුවේ විද්‍යුත් සාර්කාවය

III. පහත දැක්වෙන ස්කිරණයෙන් AB අණුවේ A සහ B පරමාණු අතර අන්තර්-න්‍යුෂ්ටික දුර (d_{A-B}) ලබා දේ.

$$d_{A-B} = r_A + r_B - c(X_B - X_A)$$

r = පරමාණුක අරය; c = 9 pm

සැකු: d සහ r පිශෙක්මීටරවලින් (pm) මතිනු ලැබේ. (1 pm = 10⁻¹² m)

ඉහත සඳහන් තොරතුරු පදනම් කරගෙන පහත දැක්වෙන ප්‍රශ්නවලට පිළිතුරු සපයන්න.

(i) A සහ B අතර ර බන්ධන වර්ගය හැඳුනාගැනීමට යොදාගන්නා නම කුමක් ද?

.....

(ii) AB අණුවහි භාගික ආරෝපණ (R+ සහ R-) ස්ථානගත වී ඇත්තේ කෙසේදැයි පෙන්නුම් කරන්න.

.....

(iii) AB අණුවේ ද්වීමුළු සුරුණය (μ) ගණනය කිරීමට භාවිත කරන ස්කිරණය ලියා එහි දිගාව පෙන්නුම් කරන්න.

(iv) පහත දැක්වෙන දත්ත උපයෝගී කරගතිමත් HF අණුවේ H-F බන්ධනයේ අයනික ස්වභාවයේ ප්‍රතිශතය ගණනය කරන්න.

$$H_2 \text{ වල } \text{ අන්තර්-න්‍යාලේක දුර (d_{H-H}) = 74 \text{ pm} \quad F \text{ වල } \text{ විද්‍යුත් සාර්ථකාවය} = 4.0$$

$$F_2 \text{ වල } \text{ අන්තර්-න්‍යාලේක දුර (d_{F-F}) = 144 \text{ pm} \quad HF \text{ වල } \text{ ද්‍රීමුටුව සුරුණය} = 6.0 \times 10^{-30} \text{ C m}$$

$$H \text{ වල } \text{ විද්‍යුත් සාර්ථකාවය} = 2.1 \quad \text{ඉලෙක්ට්‍රොනයක ආරෝපණය} = 1.6 \times 10^{-19} \text{ C}$$

ඉගෙ
සිංහල
කිහිපය
සාමාජික
පිටපත

100

(ලක්ෂණ 20 පි)

2. (a) A, B, C සහ D යනු p-ගොනුවට අයත් මූලද්‍රව්‍යවල ක්ලෝරයිඩ් වේ. මෙම මූලද්‍රව්‍යවල පරමාණුක ක්‍රමාන්ක 20 ට අඩු ය. A සිමිත ජලය ප්‍රමාණයක් සහ B, C සහ D වැඩිපුර ජලය සමග ප්‍රතික්‍රියා කළවිට ලබාදෙන එලවල (P₁ – P₉) විස්තර පහත දී ඇත.

සංයෝගය	එලවල විස්තර	
A	P ₁	ජාල සහසංයුත් විශ්‍යාහයක් ඇැකි සංයෝගයක්
	P ₂	ප්‍රබල ඒකභාස්මික අම්ලයක්
B	P ₃	රතු ලිටිමස් නිල් ගන්වන වායුවක්
	P ₄	විරෝධා ලෙස්ස සහිත සංයෝගයක්
C	P ₅	ව්‍යුහාස්මික අම්ලයක්
	P ₆	ප්‍රබල ඒකභාස්මික අම්ලයක්
D	P ₇	ආම්ලික KMnO ₄ දාවණයක් අවරුණ කරන වායුවක්
	P ₈	කළීල සහයක්
	P ₉	ප්‍රබල ඒකභාස්මික අම්ලයක්

(i) A, B, C සහ D හඳුනාගන්න (රසායනික සුතු දෙන්න).

A: B: C: D:

(ii) P₁ සිට P₉, එල ලබාදෙන් ජලය සමග A, B, C සහ D හි ප්‍රතික්‍රියාවලට තුළුන රසායනික සම්කරණ දෙන්න.

.....
.....
.....
.....

(iii) පහත සඳහන් ප්‍රතිඵ්‍යා සඳහා තුළිත රසායනික සමිකරණ ලියන්න.

I. P_1 සමග NaOH(aq)

II. P_3 සමග Mg

III. P_7 සමග ආමේලික $\text{K}_2\text{Cr}_2\text{O}_7$

(ලෙසු 50 පි)

(b) $\text{Al}_2(\text{SO}_4)_3$, H_2SO_4 , $\text{Na}_2\text{S}_2\text{O}_3$, BaCl_2 , $\text{Pb}(\text{Ac})_2$ සහ KOH වල ජලිය දාවණ අඩංගු P, Q, R, S, T සහ U (පිළිවෙළින තොටෙ) ලෙස ලේඛල් කර ඇති බෝතල්, ශිෂ්‍යයෙකුට ලබා දෙන ලදී. එවා හඳුනාගැනීම සඳහා වරකට දාවණ දෙක බැඳින් මූලික කිරීමෙන් ලැබුණු සමහර ප්‍රයෝගනවත් නිරීක්ෂණ පහත දක්වා ඇත. (Ac - ඇඹිටෙටි අයනය)

	මූලික දාවණ	නිරීක්ෂණ
I	$\text{T} + \text{R}$	පැහැදිලි අවර්ණ දාවණයක්
II	$\text{P} + \text{R}$	සුදු අවක්ෂේපයක්
III	$\text{T} + \text{S}$	සුදු ජෙලටිනිය අවක්ෂේපයක්
IV	$\text{U} + \text{R}$	සුදු අවක්ෂේපයක්
V	$\text{P} + \text{Q}$	සුදු අවක්ෂේපයක්, රත් කළවීට කළපැහැ ගනී
VI	$\text{P} + \text{U}$	සුදු අවක්ෂේපයක්, රත් කළවීට ද්‍රවණය වේ

(i) P සිට U හඳුනාගන්න.

P :

Q :

R :

S :

T :

U :

(ii) ඉහත I සිට VI දක්වා ඇති එක් එක් ප්‍රතිඵ්‍යාව සඳහා තුළිත රසායනික සමිකරණ දෙන්න.

I:

II:

III:

IV:

V: සුදු අවක්ෂේපය සැදීම:

රත් කළවීට කළපැහැ ගැනීම:

VI:

(කොයි: අවක්ෂේප \downarrow යනුවෙන් දක්වන්න.)

(ලෙසු 50 පි)

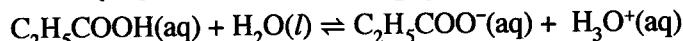
100

3. (a) ජලයේ අජ්ප වශයෙන් දියවන $\text{AB}_2(\text{s})$ නම් ලවණයෙහි සංතාප්ත ජලිය දාවණයක්, 25°C දී ආසුළු ජලය 1.0 dm^3 තුළ $\text{AB}_2(\text{s})$ වැඩිපුර ප්‍රමාණයක් මත්ප්‍රති කිරීමෙන් සාදන ලදී. මෙම සංතාප්ත ජලිය දාවණයේ පවතින $\text{A}^{2+}(\text{aq})$ අයන ප්‍රමාණය 2.0×10^{-3} mol බව සොයා ගන්නා ලදී.

(i) 25°C දී ඉහත පද්ධතියේ $\text{AB}_2(\text{s})$ හි දාවණකාව හා සම්බන්ධ සමතුලිතය ලියා දක්වන්න.

.....

(ii) 25°C දී ඉහත (i) හි ලියන ලද සමතුලිතකාවයේ සමතුලිතකා නියතය සඳහා ප්‍රකාශනය ලියා දක්වන්න.


(iii) 25°C දී ඉහත (ii) හි සඳහන් කළ සමතුලිතකා තියත්තයේ අගය ගණනය කරන්න.

ಮಂತ್ರ
ಕೀರಣೆ
ಕೀರಿವಕ
ಜ್ಞಾ ಲಿಂಗಣ್ಣ

(iv) AB_2 හි වෙනත් සංත්‍යුති ජ්‍යෙෂ්ඨ දාව්‍යනයක්, 25°C දී ආසුළු රුග්‍රය 2.0 dm^3 තුළ $AB_2(s)$ වැඩිපිරු ප්‍රමාණයක් මත්තනය කිරීමෙන් සාදා ගන්නා ලදී. මෙම පද්ධතිය සඳහා සම්බුද්ධතා නියතයේ අයය සේවු දක්වමින් ප්‍රරෝක්තනය කරන්න.

(v) 25 °C හි පවතින AB_2 හි ජලය සංන්ඡේක දාවක්‍රයකට $NaB(s)$ නැමැති ප්‍රබල විද්‍යුත් විවිධේකයක ස්වල්ප ප්‍රමාණයක් එකතු කරන ලදී. $A^{2+}(aq)$ වල සාන්දුරුය වැඩිවේ ද, අඩුවේ ද යන වග හේතු දක්වීම්න් පුරෝග්ක්‍රමය කරන්න.

(b) ජලය දාවුනුයකදී ප්‍රොපනොයික් අම්ලය (C_2H_5COOH) පහත දැක්වෙන ආකාරයට අයනිකරණය වේ.

$$25^\circ\text{C} \text{ දී } K_a(\text{ප්‍රොපනොයික් අම්ලය) = 1.0 \times 10^{-5} \text{ වේ.}$$

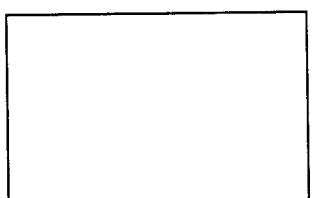
(i) 25°C දී ගෙනත පතිකියාවේ සම්බුද්ධතා නියතය සඳහා ප්‍රකාශනය ලියා දක්වන්න.

(ii) 25°C දී $\text{C}_2\text{H}_5\text{COOH}$ වලින් 0.74 cm^3 ආපුත ජලයේ දාවණය කිරීමෙන් $\text{C}_2\text{H}_5\text{COOH}$ නි 100.0 cm^3 ක ජලය දාවණයක් සාදාගන්නා ලදී. 25°C දී මෙම දාවණයේ pH අගය ගණනය කරන්න.

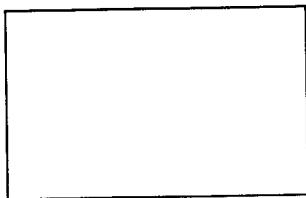
($\text{C}_2\text{H}_5\text{COOH}$ විශ ප්‍රමාණයේ 1.0 g cm^{-3} ඔහු ප්‍රමාණය්නා.)

(C = 12; O = 16; H = 1; $\text{C}_6\text{H}_5\text{COOH}$ වල සැන්ත්වය 1.0 g cm^{-3} ලෙස සලකන්න.)

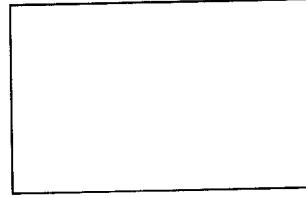
More Past Papers at
tamilguru.lk

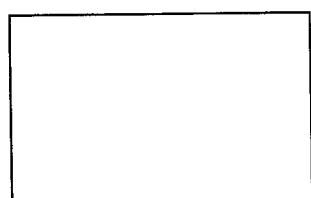

100

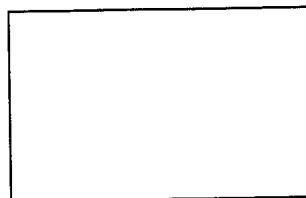
(ക്രെഡിറ്റ് 40 പി.)

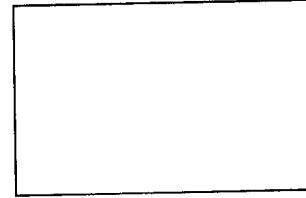

「ତତ୍ତ୍ଵବିଦୀ ମିଶ୍ରା ବିଲକ୍ଷଣ.

අැමෝනිකයක AgNO_3 සමඟ A පමණක් අවක්ෂණයක් ලබා දෙයි. A සඳහා එක් ස්ථාන සමාවයවිකයක් පමණක් ඇති අතර, එය B වේ. B යනු C හි දාම සමාවයවිකයක් වේ. C, HgSO_4 / තනුක H_2SO_4 සමඟ ප්‍රතික්‍රියා කර E සහ F එල දෙක ලබා දෙයි. D, HgSO_4 / තනුක H_2SO_4 සමඟ ප්‍රතික්‍රියා කර, එක් එලයක් පමණක් ලබාදෙන අතර, එය E වේ.


(i) A, B, C, D, E සහ F වල ව්‍යුහයන් පහත දී ඇති කොට්ඨාස තුළ අදින්න.


A

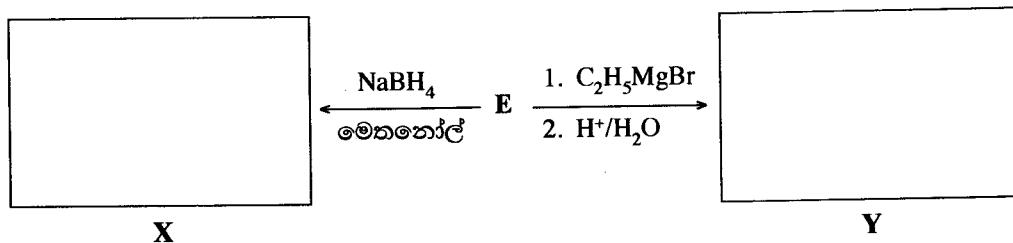

B


C

D

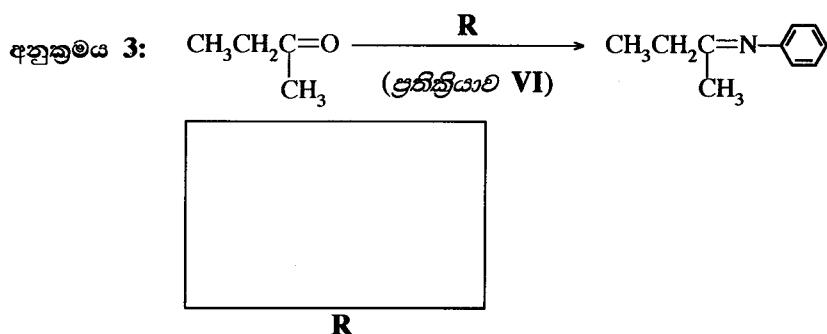
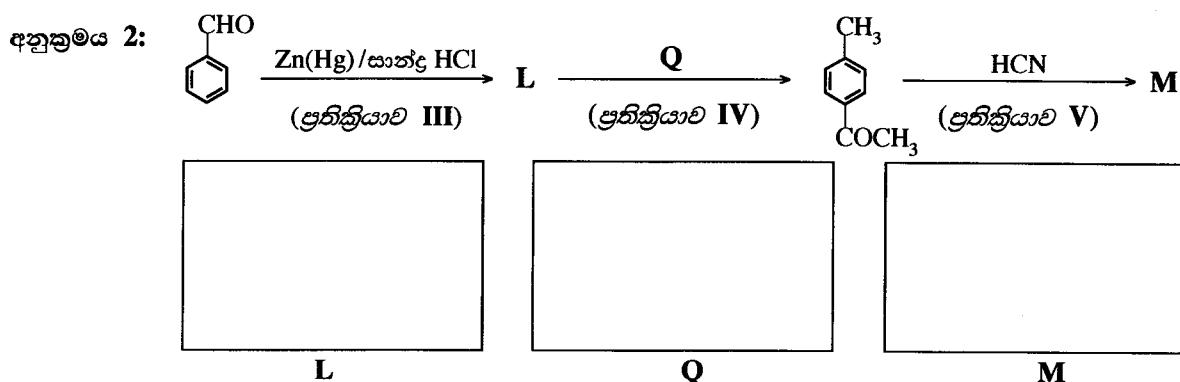
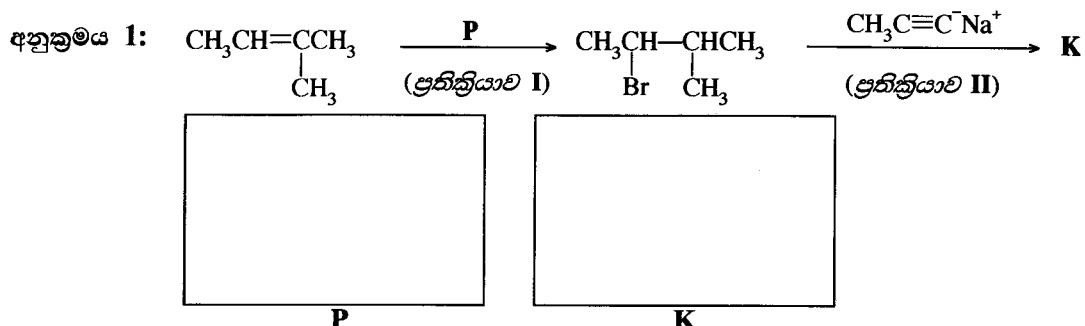
E

F


(ii) H_2 / Pd-BaSO₄ / ක්විනොලින් සමඟ A, B, C සහ D සංයෝග වෙන වෙනත් ප්‍රතිත්තියා කළවිට, කුමන සංයෝගය පාර්තිමාන සමාවයිකතාවය නොපෙන්වන එලයක් ලබාදෙන්නේ ද?

(iii) A වැඩිපර HBr සමග පතිකියා කර ලබාදෙන G එලයේ ව්‍යුහය පහත දී ඇති කොටුව තුළ අදින්ත.

G




(iv) E පහත දී ඇති ප්‍රතික්‍රියාවලදී ලබාදෙන X සහ Y එලවල ව්‍යුහ අදාළ කොටුව තුළ අදින්න.

X සහ Y එකිනෙකින් වෙන් කර තුළාගැනීමට පරීක්ෂාවක් නම් කරන්න.

(କେବଳ 60 ଦିନ)

(b) (i) දී ඇති කොටු කුල **K**, **L** සහ **M** සංයෝගවල විෂ්නු ඇදිමෙන් සහ **P**, **Q** සහ **R** ප්‍රතිකාරක/ලත්ප්‍රේරක දෙමෙන් පහත දී ඇති ප්‍රතික්‍රියා අනුත්‍ම කුන සම්පූර්ණ කරන්න.

(ලෙඛන 30 පි)

(ii) ප්‍රතික්‍රියා **I** – **VI** අතුරෙන් තෝරාගනීමින් පහත දක්වා ඇති එක් එක් එක් ප්‍රතික්‍රියා වර්ගය සඳහා එක (01) නිදසුනක් බැඳීන් දෙන්න.

නියුත්ක්ලියෝගිලික ආකලනය

නියුත්ක්ලියෝගිලික ආදේශය

(ලෙඛන 10 පි)

* *

100

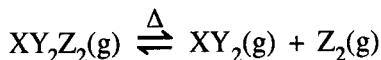
නව නිර්දේශය/ප්‍රතිඵල පාත්තිෂ්ටම/New Syllabus

NEW

ඩීප්‍රේෂණ ප්‍රාග්ධන පාත්තිෂ්ටම/ නව නිර්දේශය/ප්‍රතිඵල

Department of Examinations, Sri Lanka

අධ්‍යායන පොදු සහතික පත්‍ර (උස්ස පෙළ) විභාගය, 2020
කළංඩාප් පොතුත් තුරාතුරු පත්තිර (ඉයර් තුරු)ප් පරිශීලක, 2020
General Certificate of Education (Adv. Level) Examination, 2020රසායන විශ්‍යාව II
ඇර්චායනවියල් II
Chemistry II


02 S II

$$* \text{ සාර්වත්‍රි වායු නියතය } R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$* \text{ ඇවශායිල් නියතය } N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$$

B කොටස — රචනා

ප්‍රශ්න දෙකකට පමණක් පිළිබුරු සපයන්න. (එක් එක් ප්‍රශ්නයට ලකුණු 150 බැංකින් ලැබේ.)

5. (a) $\text{XY}_2\text{Z}_2(\text{g})$ නමැති සංයෝගය 300 K ට වඩා ඉහළ උෂ්ණත්වවලට රත්කළ විට පහත පරිදි වියෝගනය වේ.

$\text{XY}_2\text{Z}_2(\text{g})$ හි 7.5 g ක සාම්පූහ්‍යක් රේවනය කරන ලද 1.00 dm^3 දූජ-සංවාත බදුනක් තුළ තබා උෂ්ණත්වය 480 K දක්වා වැඩිකරන ලදී.

$\text{XY}_2\text{Z}_2(\text{g})$ හි මුළුලික ස්කන්ධය 150 g mol^{-1} වේ. 480 K හිදී RT හි ආසන්න අගය ලෙස 4000 J mol^{-1} යොදාගන්න. සියලුම වායුන් පරිපූර්ණ වායු ලෙස හැසිරෙන විට උපක්‍රේඛනය කරන්න.

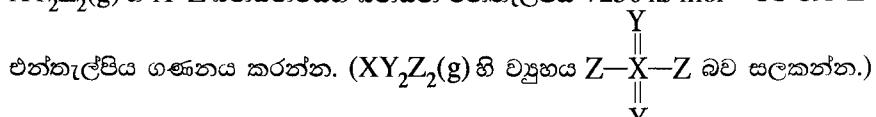
(i) වියෝගනය වීමට පෙර හාජනය තුළ ඇති $\text{XY}_2\text{Z}_2(\text{g})$ මුළු සංඛ්‍යාව ගණනය කරන්න.

(ii) ඉහත පද්ධතිය 480 K දී සමතුලිතතාවයට එළඳී විට හාජනය තුළ ඇති මූල්‍ය මුළු ප්‍රමාණය $7.5 \times 10^{-2} \text{ mol}$ බව සොයාගන්නා ලදී. 480 K දී සමතුලිතතා මිශ්‍රණය තුළ ඇති $\text{XY}_2\text{Z}_2(\text{g})$, $\text{XY}_2(\text{g})$ සහ $\text{Z}_2(\text{g})$ හි මුළු සංඛ්‍යා ගණනය කරන්න.

(iii) 480 K දී මෙම ප්‍රතිත්වාව සඳහා සමතුලිතතා නියතය K_C ගණනය කරන්න.

(iv) 480 K දී සමතුලිතතාවය සඳහා K_p ගණනය කරන්න. (ලකුණු 75 පි)

(b) ඉහත (a) හි විස්තර කළ ප්‍රතිත්වාව වන $\text{XY}_2\text{Z}_2(\text{g}) \rightarrow \text{XY}_2(\text{g}) + \text{Z}_2(\text{g})$ සඳහා 480 K හිදී, $\text{XY}_2\text{Z}_2(\text{g})$, $\text{XY}_2(\text{g})$ සහ $\text{Z}_2(\text{g})$ හි ඕනෑම ගක්කීන් (G) පිළිවෙළින් -60 kJ mol^{-1} , -76 kJ mol^{-1} සහ -30 kJ mol^{-1} වේ.


(i) 480 K දී ප්‍රතිත්වාවහි ΔG (kJ mol^{-1} වලින්) ගණනය කරන්න.

(ii) ඉහත ප්‍රතිත්වාවහි 480 K දී ΔS හි විශාලත්වය $150 \text{ J K}^{-1} \text{ mol}^{-1}$ වේ. ΔS සඳහා නිවැරදි ලකුණු (+ හෝ -) හාවිත කරමින් 480 K දී ප්‍රතිත්වාව සඳහා ΔH ගණනය කරන්න.

(iii) ඉහත (ii) හි ලබාගත් ΔH හි ලකුණු (+ හෝ -) අනුව මෙම ප්‍රතිත්වාව තාපදායක ද තාපාවගේ ද යන වග පැහැදිලි කරන්න.

(iv) 480 K දී $\text{XY}_2(\text{g})$ හා $\text{Z}_2(\text{g})$ මිශ්‍රණය $\text{XY}_2\text{Z}_2(\text{g})$ සැදීමේදී එන්තැල්පි වෙනස අප්‍රේහනය කරන්න.

(v) $\text{XY}_2\text{Z}_2(\text{g})$ හි X-Z බන්ධනයෙහි බන්ධන එන්තැල්පිය $+250 \text{ kJ mol}^{-1}$ වේ නම් Z-Z බන්ධනයෙහි බන්ධන

(vi) වායුමය XY_2Z_2 වෙනුවට දව XY_2Z_2 හාවන කළේනම්, එවිට $\text{XY}_2\text{Z}_2(l) \rightarrow \text{XY}_2(\text{g}) + \text{Z}_2(\text{g})$ ප්‍රතිත්වාව සඳහා ලැබෙන ΔH හි අගය ඉහත (ii) හි ලබාගත් ΔH හි අයට සමාන ද, තැනහෙත් වඩා විශාල ද හෝ කුඩා ද යන වග හේතු දක්වමින් පහදන්න.

(ලකුණු 75 පි)

6. (a) දී ඇති T උෂ්ණත්වයේදී සංඛ්‍යා බඳුනක් තුළ සිදුවන පහත දක්වා ඇති ප්‍රතික්‍රියාව සලකන්න.

(i) ප්‍රතික්‍රියාවේ දක්වා ඇති එක් එක් සංයෝගයට අදාළව ප්‍රතික්‍රියාවේ ශිෂ්ටතාව සඳහා ප්‍රකාශන ක්‍රියාවෙන් නැතුවේ.

(ii) මෙම ප්‍රතික්‍රියාව, T උෂ්ණත්වයේදී, $\text{N}_2\text{O}_5(\text{g})$ හි 0.10 mol dm^{-3} ආරම්භක සාන්දුණයක් සහිතව සිදු කරන ලදී.

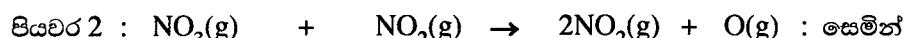
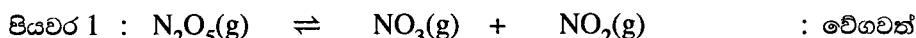
400 s කාලයකට පසුව ආරම්භක ප්‍රමාණයෙන් 40% ක් වියෝගනය වී ඇති බව සොයාගන්නා ලදී.

I. මෙම කාල පරාපයේදී $\text{N}_2\text{O}_5(\text{g})$ වියෝගනය වීමේ සාමාන්‍ය ශිෂ්ටතාව (average rate of decomposition) ගණනය කරන්න.

II. $\text{NO}_2(\text{g})$ සහ $\text{O}_2(\text{g})$ සැදෙන සාමාන්‍ය ශිෂ්ටතාවයන් (average rates of formation) ගණනය කරන්න.

(iii) වෙනත් පරික්ෂණයකදී, මෙම ප්‍රතික්‍රියාව සඳහා 300 K දී ආරම්භක ශිෂ්ටතා මතින ලද අතර, එහි ප්‍රතිඵල පහත දක්වා ඇත.

$[\text{N}_2\text{O}_5(\text{g})] / \text{mol dm}^{-3}$	0.01	0.02	0.03
ආරම්භක ශිෂ්ටතාව / $\text{mol dm}^{-3} \text{ s}^{-1}$	6.930×10^{-5}	1.386×10^{-4}	2.079×10^{-4}



300 K දී ප්‍රතික්‍රියාව සඳහා ශිෂ්ටතා ප්‍රකාශනය ව්‍යුත්පන්න කරන්න.

(iv) වෙනත් පරික්ෂණයක් 300 K දී $\text{N}_2\text{O}_5(\text{g})$ හි 0.64 mol dm^{-3} ආරම්භක සාන්දුණයක් සහිතව සිදු කරන ලදී. 500 s කාලයකට පසුව ඉතිරි වී ඇති $\text{N}_2\text{O}_5(\text{g})$ සාන්දුණය $2.0 \times 10^{-2} \text{ mol dm}^{-3}$ බව සොයාගන්නා ලදී.

I. 300 K දී ප්‍රතික්‍රියාවේ අර්ථ-ඡේව කාලය ($t_{1/2}$) ගණනය කරන්න.

II. 300 K දී ප්‍රතික්‍රියාවේ ශිෂ්ටතා-නීයතය ගණනය කරන්න.

(v) මෙම ප්‍රතික්‍රියාව පහත සඳහන් මුළුක පියවර සහිත යන්ත්‍රණයක් හරහා සිදුවේ.

ඉහත යන්ත්‍රණය ප්‍රතික්‍රියාවෙහි විග නියමයට අනුකූල වන බව පෙන්වන්න.

(ලක්ෂණ 80 යි)

(b) T උෂ්ණත්වයේදී A සහ B තමැති ද්‍රව දෙකක් රේවනය කළ සංඛ්‍යා බඳුනක් තුළ මිශ්‍ර තිරිමෙන් පරිපූර්ණ ද්‍රවයාගේ ද්‍රව මිශ්‍රණයක් සාදන ලදී. T උෂ්ණත්වයේදී සමතුලිතකාවයට එළඹි පසු වාෂ්ප කළාපයෙහි A සහ B හි ආංඩික වාෂ්ප පිඩින පිළිවෙළින් P_A සහ P_B වේ. T උෂ්ණත්වයේදී A සහ B හි සංතාප්ත වාෂ්ප පිඩින පිළිවෙළින් P_A° සහ P_B° වේ. උවණය තුළ A සහ B හි මුළුහාග පිළිවෙළින් X_A සහ X_B වේ.

(i) $P_A = P_A^\circ X_A$ බව පෙන්වන්න.

(සමතුලිත අවස්ථාවේදී වාෂ්පීකරණයේ හා සනීහවනයේ ශිෂ්ටතාවයන් සමාන බව සලකන්න.)

(ii) 300 K දී ඉහත පද්ධතියේ මුළු පිඩිනය $5.0 \times 10^4 \text{ Pa}$ වේ. 300 K හිදී සංගුද්ධ A සහ B හි සංතාප්ත වාෂ්ප පිඩින පිළිවෙළින් $7.0 \times 10^4 \text{ Pa}$ හා $3.0 \times 10^4 \text{ Pa}$ වේ.

I. සමතුලිත මිශ්‍රණයෙහි ද්‍රව කළාපයේ ඇති A හි මුළුහාග ගණනය කරන්න.

II. සමතුලිත මිශ්‍රණයෙහිදී A හි වාෂ්ප පිඩිනය ගණනය කරන්න.

(ලක්ෂණ 70 යි)

7. (a) (i) විද්‍යුත් විවිධේ හා ගැල්වානී කෝෂවල ගුණ සංසන්දනය කිරීම සඳහා පහත වගුව පිටපත් කර දී ඇති පද යොදා සම්පූර්ණ කරන්න.

පද: ඇනොෂ්ඩය, කැනෙක්ඩය, ධන, සාණු, ස්වයංසිද්ධ, ස්වයංසිද්ධ තොවන

විද්‍යුත් විවිධේ කෝෂය	ගැල්වානී කෝෂය
A. ඔක්සිකරණ අර්ථ ප්‍රතිත්වාව සිදු වන්නේ	
B. ඔක්සිහරණ අර්ථ ප්‍රතිත්වාව සිදු වන්නේ	
C. E_{cell}° හි ලකුණ	
D. ඉලෙක්ට්‍රොෂ් ගලා යන්නේ සිට දක්වා සිට දක්වා	
E. කෝෂ ප්‍රතිත්වාවහි ස්වයංසිද්ධතාවය	

(ii) පහත දැක්වෙන පරිදි 300 K දී $\text{Zn}(\text{s})$ ඇනොෂ්ඩයක්, හාස්මික ජලිය විද්‍යුත් විවිධේයක් හා වාතයේ ඇති $\text{O}_2(\text{g})$ වායුව ලබාගැනීමට උපකාරී වන සවිවර Pt කැනෙක්ඩයක් හා විතයෙන් විද්‍යුත් රසායනික කෝෂයක් ගොඩනගන ලදී. කෝෂය ත්‍රියාත්මක වනවිට $\text{ZnO}(\text{s})$ සැදේ.

$$E_{\text{ZnO}(\text{s}) \mid \text{Zn}(\text{s}) \mid \text{OH}^-(\text{aq})}^{\circ} = -1.31 \text{ V} \quad \text{සහ} \quad E_{\text{O}_2(\text{g}) \mid \text{OH}^-(\text{aq})}^{\circ} = +0.34 \text{ V}$$

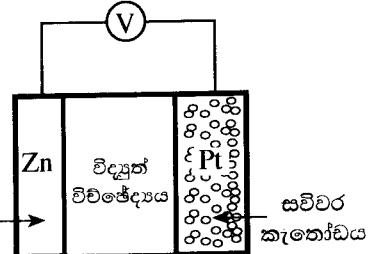
$$\text{Zn} = 65 \text{ g mol}^{-1}, \text{O} = 16 \text{ g mol}^{-1} \quad \text{සහ}$$

$$1 F = 96,500 \text{ C} \quad \text{වේ} \quad \text{දී} \quad \text{අත්.}$$

I. ඇනොෂ්ඩය හා කැනෙක්ඩය මත සිදුවන අර්ථ ප්‍රතිත්වාව දියා දක්වන්න.

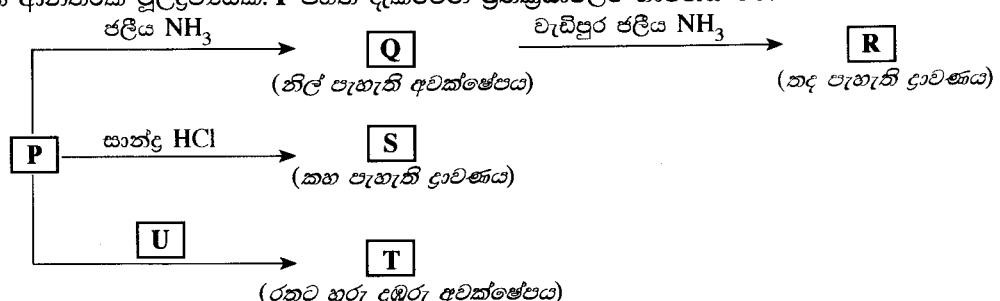
II. සම්පූර්ණ කෝෂ ප්‍රතිත්වාව දියා දක්වන්න.

III. 300 K දී කෝෂයේ විනවය E_{cell}° ගණනය කරන්න.


IV. ඉලෙක්ට්‍රොෂ් අතර $\text{OH}^-(\text{aq})$ හි ගමන් මගේ දියාව සඳහන් කරන්න.

V. 300 K දී කෝෂය 800 s කාලයක් තුළ ත්‍රියාත්මක වනවිටදී $\text{O}_2(\text{g})$ 2 mol වැය වේ.

A. කෝෂය හරහා ගමන් කරන ඉලෙක්ට්‍රොෂ් මුවල සංඛ්‍යාව ගණනය කරන්න.


B. සැදෙන $\text{ZnO}(\text{s})$ හි ස්කන්ධය ගණනය කරන්න.

C. කෝෂය තුළින් ගමන් කරන බාරාව ගණනය කරන්න.

(ලකුණු 75 පි)

(b) $\text{M}(\text{NO}_3)_n$ ලියනය ආසුනු ජලයේ දුවනය කළවීම P නම් වර්ණවන් සංකීර්ණ අයනය සැදේ. M, 3d ගොනුවට අයන් ආන්තරික මූල්‍යවායකි. P පහත දැක්වෙන ප්‍රතිත්වාවලට හාරනය වේ.

T සහ U මූල්‍යවායක ප්‍රතිත්වාව හතරක් බැඳින් අඩංගු සංගත සංයෝග වේ. P, R සහ S සංකීර්ණ අයන වේ.

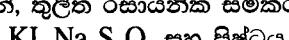
(i) M ලේඛන නුත්‍රාන්ස් ප්‍රතිත්වාව සංකීර්ණ අයනයේ M වල ඔක්සිකරණ අවස්ථාව දෙන්න.

(ii) $\text{M}(\text{NO}_3)_n$ හි n වල අයය දෙන්න.

(iii) P සංකීර්ණ අයනයේ M වල සම්පූර්ණ ඉලෙක්ට්‍රොෂ් වින්‍යාසය දියන්න.

(iv) P, Q, R, S, T සහ U වල රසායනික සූත්‍ර දියන්න.

(v) P, R, S, T සහ U වල IUPAC නම් දියන්න.

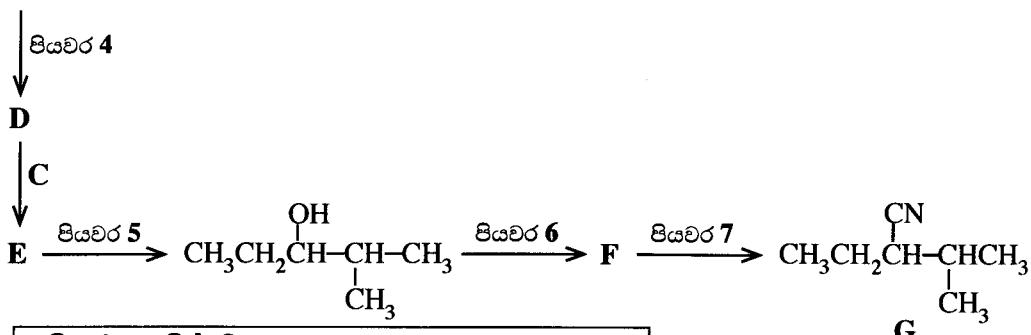

(vi) P වල වර්ණය කුමක් ද?

(vii) පහත I හා II හිදී ඔබ බලාපොරොත්තු වන නිරීක්ෂණ මොනවා ද?

I. කාමර උෂ්ණත්වයේදී P අඩංගු ආම්ලික දාවනයකට H_2S වායුව යැඩු වේ

II. I න් ලැබෙන මිශ්‍රණයේ දුවනය වේ ඇති H_2S ඉවත් කිරීමෙන් පසු තනුක HNO_3 සමග රැක්ක විට

(viii) ජලය දාවනයක පවතින $\text{M}^{\text{II}+}$ වල සාන්දුනය නිරීක්ෂණ කිරීමට ක්‍රමවේදයක් පහත දැක්වෙන රසායනික දුවන උපයෝගී කරගතිමින්, තුළිත රසායනික සම්කරණ ආධාරයෙන් කෙටියෙන් විස්තර කරන්න.


(ලකුණු 75 පි)

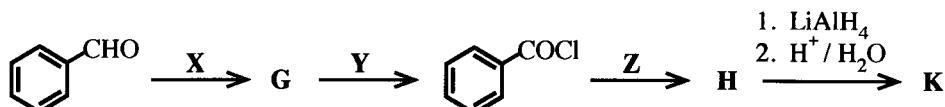
C කොටස – රවනා

ප්‍රශ්න දෙකකට පමණක් පිළිතුරු සපයන්න. (එක් එක් ප්‍රශ්නයට ලකුණු 150 බැංශින් ලැබේ.)

8. (a) (i) එකම කාබනික ආරම්භක සංයෝගය ලෙස $\text{CH}_3\text{CH}_2\text{CH}_2\text{OH}$ හාවිත කරමින් G සංයෝගය සංය්ලේෂණය කිරීම සඳහා ප්‍රතික්‍රියා අනුතුමයක් පහත දී ඇත.

A, B, C, D, E සහ **F** සංයෝගවල ව්‍යුහ ඇදිමෙන් සහ පියවර 1 – 7 සඳහා සුදුසු ප්‍රතිකාරක ලැයිස්තුවේ දී ඇති ඒවායින් පමණක් තෝරාගෙන ලිවීමෙන්, මෙම ප්‍රතික්‍රියා අනුතුමය සම්පූර්ණ කරන්න.

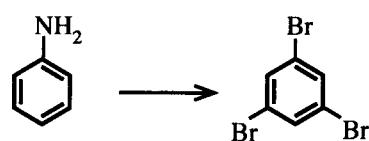
ප්‍රතිකාරක ලැයිස්තුව


HBr, PBr₃, പിരിച്ചിനിയമിക്സ് ലോറോക്സൈഡ് (PCC),

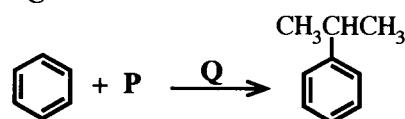
Mg / වියලි රෙතර, KCN, සාන්ද H_2SO_4 , තහැක H_2SO_4

(කොන් 52 දි)

(ii) පහත දැක්වෙන ප්‍රතික්‍රියා දාමය සලකන්න.


G, H සහ K සංයෝගවල ව්‍යුහ අදින්න. X, Y සහ Z ප්‍රතිකාරක දෙන්න.

$K, NaNO_2$ / තහුක HCl සමග ප්‍රතික්‍රියා කළ විට බෙන්සිල් ඇල්කොහොල් () ලබා ලෙන බව සැලකන්න.


(ලංකා 24 අය)

(b) (i) පහත අනුමත පරිවර්තනය තුනකට නොවැඩි පියවර සංඛ්‍යාවකින් සිද කරන්නේ කෙසේ පිළි ගෙන්නා ගැනීමෙන්

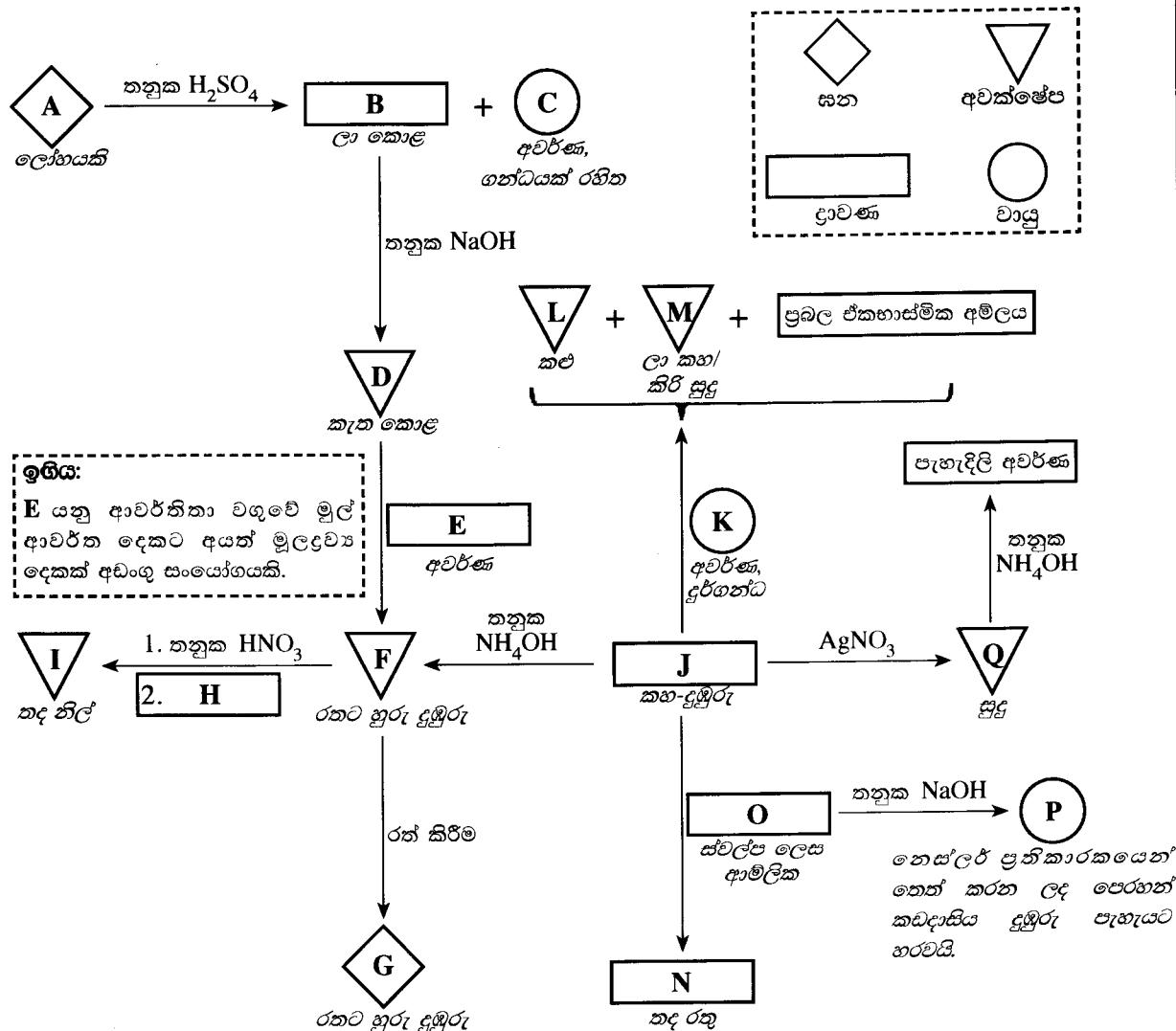
(ලක්ශණ 20 දි)

(ii) පහත ප්‍රතිකියාව සඳහන්න.

මෙම ප්‍රතිත්වියාව සිදු කිරීම සඳහා අවශ්‍ය වන **P** සහ **Q** රසායනික ද්‍රව්‍යන් හඳුනාගන්න.

මෙම ප්‍රතිකිරියාවේ යන්ත්‍රණය ලියන්න.

(ලංකා 20 අවුරුදු)


(c) (i) බෙන්සින්වලට වඩා පිනෙය්ල් ඉලෙක්ට්‍රොනික ආදේශ ප්‍රතිත්‍යාවලදී ප්‍රතිත්‍යායිලි වන්නේ මන්දුයි ඒවායේ සම්පූර්ණ දෙමුවුම් සලකම්න් පැහැදිලි කරන්න.

(ii) සුදුසු ප්‍රතිත්‍යාවක් අනුසාරයෙන් පිනෙය්ල් සහ බෙන්සින් අතර ඉහත (i) හි දක්වා ඇති ප්‍රතිත්‍යායිලිනාවයේ වෙනස විදාහා දක්වන්න.

(iii) ඔබ ඉහත (ii) හි විස්තර කරන ලද ප්‍රතිත්‍යාවේ එලයේ/එලයන්හි ව්‍යහය/ව්‍යහ ඇන්න. (ලක්ෂණ 34 පි)

9. (a) (i) පහත දැක්වෙන ගැලීමේ සටහනේ දී ඇති A – Q දක්වා ඇති දව්‍ය (substances) වල රසායනික සූත්‍ර ලියන්න.

(යැයු: A – Q දක්වා දව්‍ය හඳුනාගැනීම සඳහා රසායනික සමිකරණ සහ හේතු බලාපොරොත්තු නොවේ.)
කොටුව (කඩ ඉරි) තුළ දැක්වෙන සංකේතවලින් සහ, අවක්ෂේප, දාවන සහ වායු නිරුපණය වේ.

(ii) A වල සම්පූර්ණ ඉලෙක්ට්‍රොනික වින්‍යාසය ලියන්න.

(iii) D, F බවට පරිවර්තනය කිරීමේදී E හි කාර්යය සඳහන් කරන්න. සඳහන් කළ කාර්යය සඳහා අදාළ තුළින රසායනික සමිකරණ දෙන්න.

(ලක්ෂණ 75 පි)

(b) X සහයේ Cu_2S සහ CuS පමණක් අඩංගු වේ. X වල අඩංගු Cu_2S ප්‍රතිගතය නිර්ණය කිරීමට පහත දැක්වෙන ක්‍රියාවලිවෙළ යොදාගන්නා ලදී.

ක්‍රියාවලිවෙළ

X සහයේ 1.00 g කොටසක් තුළු H_2SO_4 මාධ්‍යයේදී $0.16 \text{ mol dm}^{-3} KMnO_4$ 100.00 cm^3 මිශ්‍රණ පිරියම් කරන ලදී. මෙම ප්‍රතික්‍රියාව Mn^{2+} , Cu^{2+} සහ SO_4^{2-} එන් ලෙස ලබා දුනී. ඉන්පසු මෙම දාවනයේ ඇති වැඩිපුර $KMnO_4$ $0.15 \text{ mol dm}^{-3} Fe^{2+}$ දාවනයක් සමඟ අනුමාපනය කරන ලදී. අනුමාපනය සඳහා අවශ්‍ය වූ පරිමාව 35.00 cm^3 වේ.

(i) ඉහත ක්‍රියාවලිවෙළදී සිදුවන ප්‍රතික්‍රියා සඳහා තුළින අයනික සමිකරණ ලියන්න.

(ii) ඉහත (i) හි පිළිතුරු පදනම් කරගෙන පහත දැක්වෙන ඒවායේ මුළු අනුපාතය නිර්ණය කරන්න.

I. Cu_2S සහ $KMnO_4$

II. CuS සහ $KMnO_4$

III. Fe^{2+} සහ $KMnO_4$

(iii) X හි Cu_2S වල ප්‍රතිගතය බර අනුව ගණනය කරන්න. ($Cu = 63.5$, $S = 32$)

(ලක්ෂණ 75 පි)

[දූෂණවලියේ පිටුව බලන්න]

10. (a) පහත සඳහන් ප්‍රශ්න වයිටෙනියම් බියෝක්සයිඩ් (TiO₂) වල ඉන් සහ එහි නිෂ්පාදනය “ක්ලෝරයිඩ් ක්‍රියාවලිය” මගින් සිදු කිරීම මත පදනම් වේ.

- මෙම ක්‍රියාවලිය සඳහා හාවිත වන අමුදව්‍ය නම් කරන්න.
- නිසි අවස්ථාවන්හි තුළිත රසායනික සමිකරණ හාවිත කරමින් TiO₂ නිෂ්පාදන ක්‍රියාවලිය කෙටියෙන් විස්තර කරන්න.
- TiO₂ වල ඉන් තුනක් සඳහන් කර, එක් එක් ගුණයට අදාළ හාවිතයක් බැඩින් දෙන්න.
- මි ලංකාවේ TiO₂ නිෂ්පාදන කරමාන්ත ගාලාවක් ස්ථාපිත කිරීමට ඔබ සලකා බලන්නේ නම්, සපුරාලිය යුතු අවශ්‍යතා තුනක් සඳහන් කරන්න.
- ඉහත (ii) හි විස්තර කළ නිෂ්පාදන ක්‍රියාවලිය ගෝලීය උණුසුම සඳහා දායකවන්නේ ද? ඔබ පිළිතුර සාධාරණිකරණය කරන්න.

(ලක්ෂණ 50 පි)

(b) හරිතාගාර ආවරණයෙහි වෙනස්වීම හේතුකාටගෙන වර්තමානයේ පාලේටිගෝලයේ උණුසුම විම කාර්මික විජ්ලවයට පෙර පැවැති තත්ත්වයට වඩා සැලකිය යුතු ලෙස වැඩි වී ඇත.

- හරිතාගාර ආවරණය යනුවෙන් අදහස් වන්නේ කුමක්දුයි කෙටියෙන් පැහැදිලි කරන්න.
- පාලේටිගෝලය උණුසුම විම නිසා සිද්ධිවන ප්‍රධාන පාරිසරික ගැටුවෙහි හඳුනාගන්න.
- ගෝලීය උණුසුම ඉහළ යාමට දායක වන ප්‍රධාන ස්වාධාවික වායුන් දෙකක් සඳහන් කරන්න.
- එහි (iii) හි සඳහන් කළ වායුන් දෙක පාරිසරියට මූදාහැරීමට ක්ෂේත්‍ර තීවින් දායක වන ආකාරය කෙටියෙන් පැහැදිලි කරන්න.
- ඉහත (iii) හි සඳහන් කළ වායුවලට අමතරව ගෝලීය උණුසුම ඉහළ යාමට සාපුරුවම දායක වන කෘතීම විශ්පයිලි සංයෝග කාණ්ඩා දෙකක් නම් කර, එක් කාණ්ඩයකින් එක් සංයෝගය බැඩින් තොරුගෙන එවායේ ව්‍යුහ අදින්න.
- ඉහත (v) හි සඳහන් කළ සංයෝග කාණ්ඩා දෙක අනුරෙන් ඉහළ වායුගෝලයේ ඕසේන් වියෝග්‍රනය උත්ස්පෙරණයට දායක වන එක් සංයෝග කාණ්ඩයක් හඳුනාගන්න.
- කොට්ඨි-19 අධිවසංගතය හේතුවෙන් කාර්මික කටයුතු අඩාල විම නිසා බොහෝ රටවල ගෝලීය පාරිසරික ප්‍රශ්න තාවකාලිකව සමනාය වී ඇත. ඔබ ඉගෙන ගත් ප්‍රධාන ගෝලීය පාරිසරික ප්‍රශ්න දෙකක් අනුසාරයෙන් මෙම ප්‍රකාශය සනාථ කරන්න.

(ලක්ෂණ 50 පි)

(c) පහත සඳහන් ප්‍රශ්න දී ඇති බහුඅවයවක මත පදනම් වේ.

පොලියිනයිල් ක්ලෝරයිඩ් (PVC), පොලියිලිලින් (PE), පොලිස්ටිරින් (PS), බේක්ලයිටි, නයිලෝන් 6.6, පොලියිලිලින් ටෙරිප්තැලේටි (PET), ගටා පර්චා (Gutta percha)

- ඉහත සඳහන් බහුඅවයවක හතරක ප්‍රහරාවර්ති එකක අදින්න.
- ඉහත සඳහන් බහුඅවයවක හත (7)
 - ස්වාධාවික හෝ කෘතීම බහුඅවයවක
 - ආකළන හෝ සංසනන බහුඅවයවක

ලෙස වර්ගීකරණය කරන්න.
- බේක්ලයිටි සැදිමේදී හාවිත වන එක අවයවක දෙක නම් කරන්න.
- බහුඅවයවක එවායේ කාපර ඉන් අනුව වර්ග දෙකකට බෙදිය හැක. එම වර්ග දෙක සඳහන් කරන්න.

PVC සහ බේක්ලයිටි මින් කුමන වර්ගයන්ට අයත්දුයි එයන්න.

(v) ඉහත ලැයිස්තුවෙහි බහුඅවයවක තුනක් සඳහා හාවිත එක බැඩින් සඳහන් කරන්න.

(ලක්ෂණ 50 පි)

* * *

ଧ୍ୟାନିକିତା ଲାଭ

1	1 H													2 He
2	3 Li	4 Be												5 B
3	11 Na	12 Mg												6 C
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn		7 N
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd		8 O
6	55 Cs	56 Ba	La- Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg		9 F
7	87 Fr	88 Ra	Ac- Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn		10 Ne
														13 Al
														14 Si
														15 P
														16 S
														17 Cl
														18 Ar
														31 Ga
														32 Ge
														33 As
														34 Se
														35 Br
														36 Kr
														49 In
														50 Sn
														51 Sb
														52 Te
														53 I
														54 Xe
														81 Tl
														82 Pb
														83 Bi
														84 Po
														85 At
														86 Rn
														113 Nh
														114 Fl
														115 Mc
														116 Lv
														117 Ts
														118 Og

57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr